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Abstract. Repetitive action counting aims to count the number of peri-
odic actions in a video, offering significant application values for human
activities. However, this task has not been extensively explored, and pre-
vious methods struggle to address the periodic representation. Through
an analysis of the relationship between human poses and actions, we
present a novel concept called Salient Pose, which effectively repre-
sents each action. By further linking these salient poses and repetitive
actions, we introduce a new approach for repetitive action counting called
PoseRAC, to model the relationship between salient pose and actions
and complete the counting task based on salient poses. Leveraging the
foundation generative models, our model can perform zero-shot predic-
tions without using any training set. Furthermore, by incorporating an
off-the-shelf text encoder, our model can count unseen actions in an open-
set setting. Our approach achieves state-of-the-art performance on three
mainstream benchmarks: RepCount, UCFRep, and Countix.

Keywords: Repetitive Action Counting - Human Pose Estimation -
Foundation Generative Model

1 Introduction

Periodic movement is widespread in nature, encompassing various human activ-
ities. In computer vision, the detection of periodic human actions plays a crucial
role, such as counting physical exercise movements for effective fitness planning.
Additionally, counting repetitive/periodic movements is essential for analyzing
human actions, including tasks such as pedestrian detection [24], camera cal-
ibration [14], and 3D reconstruction [18]. Given the significance of accurately
counting periodic movements, academia proposes a task named “repetitive action
counting”, which outputs the number of any repetitive action in a video.
Despite its importance, the field of repetitive action counting has not yet
been fully explored. Existing methods [10,13,31] have mainly relied on intri-
cate and high-cost temporal feature modeling to capture periodic patterns in
videos. Typically, they pre-calculate the heat map on each frame across a video,
then regress the counting value, often by counting the peak points in these heat
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Fig. 1. Our proposed Pose-Action Trigger can perform action counting. Specifically, if
two salient poses of the current action appear sequentially, it means that this action is
occurring, and the counting value can be incremented by one.

maps. However, these methods often overlook two key characteristics of repet-
itive action counting, leading to suboptimal results. 1) Videos vary in length.
For longer videos, which means more frames, calculating the heatmap frame-by-
frame incurs a significant computational cost. Additionally, global modeling can
introduce a lot of noise, leading to inaccurate counting. 2) The cycle lengths of
different types of actions also vary. When determining whether an action has
completed a cycle, the network struggles to accommodate all types of actions,
resulting in inaccurate counts. These two factors render temporal modeling less
efficient in accurately representing periodic features in videos, suggesting the
need for alternative approaches to tackle this task.

Meanwhile, research in human pose estimation [2,30] is advancing rapidly. We
observe that poses are the most essential factors in an action and can remain
unaffected by contextual nuisances, such as background and lighting changes.
Thus, an intuitive idea is linking human pose with action-related tasks. While
recent studies have utilized human poses in action recognition [8,34], it has not
been explored in repetitive action counting task, due to the distinct differences
between the two tasks. Action recognition requires coarse-grained classification
results, whereas action counting demands the fine-grained repetitive counts of
the action. One feasible solution is to extract the poses from each frames and
then perform temporal modeling on these poses. Although computational costs
may be reduced when working with poses compared to directly on video frames,
such methods are still ineffective in addressing the characteristics of varying cycle
lengths of actions. Thus, this inspires us to ask: How to effectively link pose with
action to achieve a breakthrough in repetitive action counting task?

By observing the relationship between human poses and actions, we notice
that each action consistently involves its own distinctive poses at certain
moments, serving to differentiate it from other actions. We define these dis-
tinctive poses as salient poses, and pre-define them for each action by analyz-
ing their pose characteristics and capturing their most distinct moments. For
instance, as illustrated in Fig.1(a), the front raise action includes salient pose
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raising the arms, which distinguishes it from other actions, such as pull up or
situp. To take a step further, considering all actions (more than fifty) within three
mainstream benchmarks in the field of counting, we find each action can be dis-
tinguished by manually assigning two salient poses and using salient poses can
significantly reduce the learning complexity. Moreover, once we have explicitly
linked the two salient poses to each action, we can train the model to implicitly
learn more intrinsic relationships between different actions and poses. When the
model encounters new, unseen actions, it can still identify the salient poses of
these actions, allowing it to generalize to unseen action classes.

Based on these findings, we propose a new perspective to represent and count
actions based on the salient poses, called Pose-Action Trigger. Within this
framework, as shown in Fig. 1(b), an action is counted when two salient poses
appear in sequence, increasing the action counting value by one. In contrast
to common methods that represent actions using redundant RGB frames, the
key advantage of our framework lies in its selective use of specific frames to
capture salient poses, simplifying action representation. This simple yet effective
mechanism not only allows us to ignore irrelevant backgrounds and focus on the
essential poses, but also significantly reduces computational costs.

Furthermore, we introduce the first pose-level network called Pose Saliency
Network for Repetitive Action Counting (PoseRAC). It decouples the video-
level action counting into two stages: 1) Pose-Action Modeling, and 2) Pose-
Action Trigger. The second stage has been discussed in Fig. 1. In the first stage,
we want the model to capture the relationship between the pose of each frame
and its corresponding action, and infer each importance score of each frame on
the action. To this end, we introduce Stable Diffusion [25] and ControlNet [32] to
generate training data conditioned on our pre-defined salient poses and encour-
age the model to give higher scores on salient poses. This further allows us to
achieve “zero-shot”! prediction, as we can train the model without using any
real training set. Moreover, after training with a sufficient number of manually
designed salient poses on specific (seen) actions, we want the model to have the
potential to generalize to unseen actions. To achieve this, we additionally intro-
duce the CLIP [22] Text Encoder to obtain semantic information about unseen
actions and incorporate it into our model.

We summarize our contributions in three-fold:

— To the best of our knowledge, we are the first to introduce salient pose into the
action counting task, and propose a two-stage framework, called PoseRAC,
including Pose-Action Modeling and Pose-Action Trigger to efficiently repre-
sent and count actions with two salient poses.

— As for the Pose-Action Modeling, we only employ the generative model to
generate pose-related training images, thus enabling zero-shot prediction. And
we integrate the CLIP text encoder to incorporate additional action semantic
information to facilitate the generalization of PoseRAC for open-set unseen
actions.

! Starting from the CLIP [22], the term of zero-shot is used in a broader sense to study
generalization to unseen datasets.
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— Our PoseRAC achieves state-of-the-art performance on three mainstream
action counting benchmarks: RepCount, UCFRep, and Countix, far outper-
forming all current methods.

2 Related Work

Repetitive Action Counting. Early works focus on compressing the motion
field into one-dimensional signals to recover the repetition, such as Fourier anal-
ysis [3,21], peak detection [28], classification [7,16]. However, these methods
cannot tackle non-stationary scenarios in the context of repetitive actions.
Recently, Context [31] proposes a context-aware regression network accom-
panied by a coarse-to-fine refinement strategy for varying action cycles. Mean-
while, RepNet [10] integrates a temporal self-similarity matrix into the process
of counting. Moreover, [13] encodes multi-scale temporal correlations to handle
both high- and low-frequency actions. In contrast to previous works, we introduce
the pose modality into this task, opening up a new avenue for action counting.

Pose in Action-Related Tasks. Existing studies have explored various modal-
ities for action-related tasks, such as RGB frames [6], optical flows [26], and audio
waves [29]. While human pose has received growing interest due to its action-
focusing nature and resistance to background nuisances, such as skeleton-based
action recognition [8,34]. In this paper, we explore the relationship between pose
and action to effectively address the action counting task.

Foundation Generative Model. Based on the diffusion model, Stable Diffu-
sion [25], DALL-E2 [23], and others showcase impressive abilities in generating
images based on text prompts. Recently, ControlNet [32] proposes a practical
image editing solution, showing controllable image generation from various con-
ditioning signals, such as depth, segmentation, human pose, etc.

3 Methodology

Given a video V = {xl}lT € REXHEXWXT with T RGB frames, action counting
model aims to predict a value M, which is the number of repetitive actions.

3.1 Model Overview

Previous works mainly relied on high-cost temporal feature modeling, which
ignores the action-focused nature of the human pose. So our starting point is to
introduce poses to better represent actions and reduce complexity. As demon-
strated in Fig. 2, our PoseRAC decouples the counting into two stages:

Stage 1. Pose-Action Modeling (Sect. 3.2 to Sect. 3.4). We model the rela-
tionship between the pose of each frame with their corresponding action classes.
Specifically, the pose of each frame is extracted and then encoded to generate the
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Fig. 2. PoseRAC is a two-stage action counter. In first stage, it models the relationship
between salient poses and actions, where Stable Diffusion and ControlNet allow us to
perform zero-shot prediction without using the training set, and the CLIP Text Encoder
facilitates open-set generalization. In second stage, there is a training-free Pose-Action
Trigger to perform video-level action counting.

latent embedding. The embedding is subsequently decoded using Action Queries
via the cross-attention process, resulting in scores for each action class.

To obtain the training data containing salient poses, we use Stable Diffusion
and ControlNet to generate sufficient data for training. This process allows us to
train the model without accessing any samples from the training set, thus achiev-
ing zero-shot prediction. Moreover, we incorporate the semantic information of
unseen action classes into the Action Queries to facilitate pose recognition for
any unseen actions. This approach enhances the open-set generalization.

Stage 2. Pose-Action Trigger (Sect.3.5). We apply an pre-trained Action
Recognizer to obtain video-level action class, and combine pose recognition scores
of each frame corresponding this class. We set two threshold to distinguish the
salient pose I and II, and scan through all the frames. Each sequential appearance
of two salient poses indicates an increment in the count value by one.

3.2 Pose-Action Modeling

Pose Estimator. For the given RGB frame z, a pre-trained pose estimator [4]
converts it into pose keypoints sequence p € RP*K  where K represents the
number of keypoints, and D is the dimension of each keypoint.

Pose-Wise Encoder. We encode each pose into latent embedding using a L-
layer Transformer. For the pose p € RP*X  we further define it as {kj}f(, where
k; € RP, and embed it to obtain richer information via a MLP network E:

ZO = [E(kl)ﬂE(k2)>'"7E(kK)}T7 (1)

where E(k;) € R”" is the embedding. Z° € R¥*P" is further encoded through L

layers of self-attention in the Transformer to obtain the features Z* € RE*P .
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Pose-Text Recognition Decoder. Suppose that the number of actions is C.
For each pose, the Decoder takes ZL € RE*DP and C' Action Queries with
learnable embeddings 2° € RE*D" a5 input. It then transforms these queries
into action scores S € RY, which represents the scores for each action.

To achieve decoding, we employ cross attention to connect the Encoder fea-
tures ZL with Action Queries 2°, where the query (Q) originates from 2°, and
the key (K) and value (V) are derived from Z%. After Ly layers of decoding,
we obtain the output zLdec ¢ REXDP " Finally, we get the score of each action
class S € R® using the following module:

S = o(Squeeze(Linear(3%4:))), (2)

where the output channel of Linear is 1, and ¢ represents Sigmoid activation.

3.3 Training Data Generation

To obtain the data containing salient pose, we apply generative models, partic-
ularly Stable Diffusion [25] and ControlNet [32], to generate training data.
After pre-defining two salient poses for each action class, we have 2 x C
salient poses, which also serve as the pose conditions {cl}fle used to control
Stable Diffusion in generating k training images for each salient pose. For a single
pose condition ¢, we can generate the synthetic image x; using the ControlNet
Stable Diffusion G as follows: x; = G(z;,p,c), where z; ~ N(0,I) is random
noise, and p represents the text prompt. Finally, we can obtain our training set
D = {(xs,y:) ?ZXICX]“, which contains 2 x C' x k images. Here, y; represents the
label for each image, specifically indicating both the action and salient pose.

3.4 Open-Set Scenario Generalization

Besides the close-set setting, we aim to facilitate the generalization to previously
unseen action classes in an open-set setting. To achieve this, we apply an off-
the-shelf text encoder to encode the action classes and obtain rich semantic
information, which is then assigned to the Action Queries.

Specifically, for the unseen action classes {ci}f:o'{“, where Copen represents
the number of unseen actions, we utilize the template such as “there is a human
doing {action name} action” to create each prompt. Subsequently, we apply the
CLIP Text Encoder [22] to encode these prompts and generate the embedding
égpen € RCeren D" capturing the semantic information of these open-set action
classes. These embeddings are assigned to the Action Queries in the open-set
scenario. We use the obtained 2J,., to conduct cross-attention with the pose
feature Z”, enabling open-set pose-action modeling.

3.5 Pose-Action Trigger

The above modules are both in the first stage, which means that the output
S represents the classification for a single pose, as well as a single frame. To
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perform video-level counting, we aggregate the scores of all frames to obtain the
video score matrix S € REXT where T represents the number of frames in the
current video. Meanwhile, we apply an off-the-shelf Action Recognizer [17] to
conduct video-level action recognition, and obtain the action class C. We then
extract the scores Se € RT for C from S.

We design a lightweight Pose-Action Trigger, which has no trainable param-
eters and a time complexity of only O(n). First, we define upper and lower
bounds to separate the scores of two salient poses. This method groups non-
salient poses in the middle and classifies the salient poses at either end. Next,
we scan all frames to count the sequential occurrences of the two salient poses
for this action class. Each sequential occurrences indicates an increment in the
count by one. Through this module, we can obtain the final action count M.

3.6 Training Strategies

The modules that require training include the Pose-wise Encoder and the Pose-
Text Recognition Decoder. In terms of Action Queries, we have two settings:
1) Close-set, where the Action Queries are randomly initialized and can be
tuned during training, eliminating the need for text encoder; and 2) Open-set,
where we utilize the embedding of the CLIP Text Encoder to assign the Action
Queries and freeze them throughout the training process.

First, we transform the label y; of each image into the vector y, € RC. In
our PoseRAC, the target for the salient pose I is set to 1, while the target for
salient pose II is set to 0. The targets for all other negative samples are set to 0.5.
For example, if C = 5 and y; represent the salient pose I of the second action,
then y; = [0.5,1.0,0.5,0.5,0.5]. Similarly, if y; represents the salient pose II of
the third action, then y; = [0.5,0.5,0.0,0.5,0.5]. Then, we calculate the Binary
Cross Entropy Loss between y; € RY and its corresponding output S; € RY in
the Decoder, with the batch size set to IN. This can be defined as follows:

R
Lbce = _N 2(5 Zloss(ivj))7 (3)

loss(i, j) = yj;log Sij + (1 = yi;) log(1 — Syj). (4)

Furthermore, we employ the Triplet Margin Loss to train only the Encoder,
with the aim of enhancing its ability to produce more representative features
Z" given a pose. We select anchors a, same salient pose positive samples p, and
different salient poses negative samples n in a batch. Cosine Similarity (CS) is
used to measure the distance between features. It can be expressed as:

Etri = maX(CS(a,p) - CS(U’7 Tl) + ma‘rginv O) (5)

We pay more attention to hard samples, where the distances between anchors
and negative samples are even smaller than those of positive samples. After
training, the salient poses of each action can be distinguishable, and can cluster
in the high-level space.
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Table 1. Detailed information for three benchmarks.

Number of Videos

Dataset Categories

Train| Val | Test
RepCount [13] 9 758 | 129 | 152
UCFRep [31] 23 421 105 —
Countix [10] 57 4414|1406/ 2555

At last, our overall training combines two losses:
L= Ebce + aﬂtriy (6)

where o represents the weight factor.

4 Experiments
4.1 Experimental Setup

Datasets and Close and Open-Set Setting. We conduct comprehensive
experiments on three mainstream benchmarks for repetitive action counting,
namely RepCount, UCFRep, and Countix. The detailed information is shown in
Table 1.

In the close-set setting, we compare with previous state-of-the-art methods
on the test set of RepCount and Countix, and the validation set of UCFRep.

In the open-set setting, we evaluate the generalization of our method when
handling unseen actions. In this scenario, we use Countix dataset and re-split
the training set and validation set to ensure the classes in them are disjoint.

Evaluation Metrics. We demonstrate the superiority of our method on two
widely used metrics in this task, which are Off-By-One (OBO) count error
and Mean Absolute Error (MAE). OBO measures the error rate of repetition
count over the entire dataset, while MAE represents the normalized absolute
error between the ground truth and the prediction. They can be defined as:

N
1 N
OBO = N;Hci — ¢l <1] (7)
MAE = 1 Z l6 —ail (8)
NZ= ¢

where ¢ is the ground truth, ¢; is our prediction, and N is the video number.

Implementation Detail. We compare with some state-of-the-art action count-
ing methods: RepNet [10], Context [31], Sight & Sound [33], and TransRAC [13].
Additionally, we use video understanding methods [1,11,19] as baselines, adapt-
ing their output layers according to the TransRAC. Except for RepNet and Sight
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Table 2. Pre-defined salient poses for each action in datasets. Due to space limitations,
we take the RepCount dataset as an example.

Action Salient Pose I Salient Pose II

battle rope raising left ha%nd7 lowering right he-md7 raising right l.land, lowering left h:?bnd7
and performing a battle rope action | and performing a battle rope action

bench pressing curling up legs stretching legs

front raise putting down the arms raising the arms

jumping jacks | standing upright and arms-down jumping up and arms-upward

pommel horse body leaning to the left body leaning to the right

pull up hanging on the arms pulling up the arms

push up lying prone with arms straight lying prone and bending arms

situp lying down sitting

squat standing upright squatting

& Sound, all other methods cannot deal with the Countix dataset as it do not
provide annotations for each action cycle. For consistency, we follow the optimal
hyperparameter settings mentioned in the papers of each method.

In our method, we utilize 3D OpenPose [4] for Pose Estimation. We design
a 6-layer Transformer for Encoder and a 2-layer Transformer for Decoder. We
select UniFormerV2-L [17] as Action Recognizer, which is pretrained on Kinetics-
700 [5]. We pre-define two salient poses for each action in three datasets. Due to
space limitations, we take the RepCount dataset as an example to show the pre-
defined salient poses of each action in Table 2. During training data generation,
we use OpenPose Editor? to edit these salient poses, and use Stable Diffusion
and ControlNet to generate 1k images for each salient pose.

We report both zero-shot and few-shot performance. In zero-shot, we gen-
erate synthetic data for training without using any real training set. In few-shot,
along with the synthetic data, we extract 200 frames containing pre-defined
salient poses for each action from the training set, to fine-tune our model.

4.2 Comparisons with Previous Methods

Close-Set Performance. As shown in Table 3, PoseRAC outperforms existing
methods in terms of performance. First, when we only pretrain the PoseRAC
with synthetic images, the zero-shot performance exceeds that of previous fully-
supervised methods on the RepCount dataset, with an OBO metric of 0.43
compared to the 0.29 of TransRAC. When fine-tuning with a few of samples
from the training set, the few-shot performance is even higher, with the OBO
metric surpassing 0.5 for the first time. Similar superiority can be observed on
the UCFRep and Countix datasets.

Here, we delve into why our approach is effective. Previous methods primar-
ily extract intricate temporal features from a video clip, which are challenging

2 https://github.com/ZhUyU1997 /open-pose-editor.
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Table 3. Comparison on three datasets in both close-set and open-set settings. The
best results are highlighted in bold, and the second best is underlined. Our approach
shows superiority in both zero-shot (not see the training set) and few-shot (only a
few frames) settings. T: As RepCount and UCFRep solely consist of RGB frames, this
approach is a sight-only model for handling these datasets.

Method Method RepCount UCFRep Countix  |Countix (Open)
MAE ||/0BO 1 MAE ||/OBO 1 MAE ||0BO {MAE || OBO |
X3D [11] 0.910 | 0.106 | 0.882 | 0.126 — — — —
TANet [19] 0.662 | 0.099 | 0.691 | 0.103 — — — —
ViViT [1] 0.676 | 0.103 | 0.655 | 0.098 | — — — —
RepNet [10] fully | 0.995 | 0.013 | 0.998 | 0.009 | 0.364 | 0.303 | 0.723 | 0.195
Context [31] 0.879 | 0.155 | 0.147 | 0.790 — — — —
Sight & Sound' [33] 0.732 | 0.196 | 0.143 | 0.800 | 0.307 | 0.511 | 0.760 | 0.188
TransRAC [13] 0.443 1 0.291 | 0.441 | 0430 | — — — —
PoseRAC (Ours) zero-shot| 0.328 | 0.425 | 0.319 | 0.526 | 0.403 | 0.339 | 0.692 | 0.226
few-shot| 0.226 | 0.570 | 0.146 | 0.803 | 0.305 | 0.530 | 0.616 | 0.317

to be trained well to represent periodic movements. On the other hand, our app-
roach introduces salient pose into this task and further decouples this complex
temporal process into single-frame pose recognition. In our approach, there is
no need for training temporal modeling, making it considerably less challenging
to achieve effective training. Moreover, our Pose-Action Trigger can complete
counting based on salient poses, which is robust to interruptions during actions
and inconsistent action cycles of different action classes.

Open-Set Performance. Moreover, we also evaluate the open-set action count-
ing ability of different methods on Countix. As demonstrated in Table 3, due
to the more challenging open-set setting, the performance of RepNet and Sight
& Sound is much lower compared to the regular setting. However, our method
consistently outperforms previous methods, achieving an OBO metric of 0.32
compared to the 0.20 of RepNet. This is attributed to the ability of our method
to link salient poses with actions. Specifically, PoseRAC learns the relationship
between manually pre-defined salient poses and their corresponding actions dur-
ing training, enabling it to model the relationship between salient poses and
unseen actions. By further incorporating the semantic information of actions,
our PoseRAC can effectively recognize the salient poses of those unseen actions.

4.3 Ablation Studies

Because the RepCount dataset is currently the highest quality dataset, we con-
duct ablation studies on the validation set of RepCount, to analyze some core
ideas of PoseRAC. Here we focus on the close-set and few-shot setting.
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Table 4. Performance of different base- Table 5. Comparison of different « for
lines. Pose-level: Replace the Encoder. training losses
Image-level: Replace both the Pose Esti-

mator and the Encoder Loss a |MAE | |OBO 1
Lyece only — | 0.339 | 0.450

Baselines MAE | |OBO 7 0.01| 0.221 | 0.576

MLP 0.316 | 0.486 Lpce + aLlyp; | 0.05| 0.259 | 0.542

Pose-level | 1IDCNN 0.357 | 0.439 0.1 | 0.276 | 0.516

Transformer | 0.221 | 0.576
ResNet-50 [12] | 0.762 | 0.103
ViT-32 [9] 0.723 | 0.116

Image-level

Table 6. Comparing different assign- Table 7. Comparing different assign-
ments of Action Queries on the RepCount ments of Action Queries on Countix in
and UCFRep datasets in the close-set set- both close and open set settings

ting

. . . Countix
Action Queries Scenario
. . RepCount UCFRep MAE | OBO 1
Action Queries
MAE | |OBO T|MAE | |OBO 7 Close-set | 0.310 | 0.516
Randomly
Randomly 0.221 |0.576 |0.146 |0.803 Open-set — —
i Close-set | 0.427 | 0.409
Text Embedding |0.319 |0.483 |0.287 |0.639 Text Embedding ose-se
Open-set | 0.619 | 0.305

Additional Baselines for Encoder. We consider two dimensions for addi-
tional baselines. 1) We use different structures in the Pose-wise Encoder to
observe changes in performance. We select MLP, CNN, and Transformer, and
ensure that their parameters are set to be close to each other for a fair compari-
son. 2) We replace both the Pose Estimator and Pose-wise Encoder with image-
classification baselines. This involves directly extracting features from each RGB
frame without estimating human pose. Through this, we aim to wvalidate the
effectiveness of introducing pose information into repetitive action counting.

As demonstrated in Table 4, image-classification baselines perform poorly
because the RGB frame contains much irrelevant information, leading to high
difficulty in extracting the action information. This further demonstrates the
effectiveness of linking pose with action. On the other hand, in pose-level base-
lines, we observe that the performance of Transformer is slightly higher. We
attribute it to the self-attention between different pose keypoints, while com-
mon MLP and CNN cannot model the relationship between two distant points
effectively.

The Number of Training Data. Here we consider the impact of the amount of
training data, especially both the synthetic image and the extracted frames from
training set. To facilitate comparison, we set different numbers of synthetic data
while keeping the number of real data fixed at 200 for each pose. Simultaneously,
we maintain the number of synthetic data at 1k for each pose while varying the
number of real data. As shown in Fig. 3, as the number of both synthetic and real
data increases, the OBO metric consistently improves. Especially, increasing the
number of synthetic data from 0.25k to 1k results in a significant improvement,
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visualization of the

ing data volume. Left: the number of real
data is fixed at 200. Right: the number
of synthetic data is fixed at 1k.

embedding features extracted by the
Encoder trained (a) without or (b)
with triplet margin loss.

Table 8. Comparison among different
pose estimators. In the end, we select 3D
OpenPose for its superiority

Table 9. Comparison of all baselines
for the Pose-wise Encoder in Pose-Action
Modeling accuracy

Pose Estimator |MAE | |OBO 7 Datasets Image-level | Pose-level

HRNet [27] 0.269 0.496 ResNet | ViT | MLP | CNN | Trans
BlazePose [2] 0.240 0.561 RepCount 0.52 |0.61| 0.83 | 0.69 | 0.93
Vitpose [30] 0.243 0.551 UCFRep 0.43 |0.47| 0.68 | 0.59 | 0.82
RTMPose [15] 0.241 0.562 Countix (close)| 0.45 |0.51| 0.71 | 0.60 | 0.83
3D OpenPose [4] | 0.221 | 0.576 Countix (open)| 0.09 [0.09| 0.30 | 0.26 | 0.49

from around 0.4 to around 0.6. The performance can be further enhanced with
more data, such as 0.35k real data. In this way, our method can significantly
boost performance by generating more synthetic samples without the need for
complex design. Considering both efficiency and performance, we set the number
of synthetic and real data per salient pose to 1k and 0.2k, respectively.

Effectiveness of Training Losses. We employ two loss functions to train our
model. As shown in Table 5, we compare the performance with and without the
triplet margin loss using different values of a. While our model can be effectively
trained with binary cross-entropy loss alone, the addition of the triplet margin
loss leads to improvement. We observe that the optimal value for « is 0.01,
primarily because the two losses have different numeric scales.

Moreover, we select those frames in which the salient pose of each action
appears (here we take salient pose IT as the example), and use Pose Estimator and
Pose-wise Encoder to extract their embedding features. We employ t-SNE [20] to
visualize the first two principal components of these features. As shown in Fig. 4,
after training with the triplet margin loss, the encoder enhances its ability to
distinguish the salient poses of each class.

Effectiveness of Text Encoder. We conduct experiments to observe the effec-
tiveness of text encoder. In close-set setting, we replace the randomly initialized
Action Queries with the text embeddings from CLIP Text Encoder and retrain
the model. As shown in Table 6 and Table 7, directly assigning the Action Queries
to the text embeddings leads to a slight decrease in performance on all datasets
because the trainable queries can be more representative. However, random ini-
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tialization cannot handle the open-set scenario, as shown in Table7. The text
encoder can encode any unseen class, facilitating open-set pose recognition, give
our PoseRAC the ability to generalize to any unseen actions in open-set scenario.

Choice of Pose Estimator. Accurate action counting of PoseRAC relies on
accurate pose estimation, so we compare several excellent pose estimatiors. Here,
we replace the Pose Estimator in our PoseRAC with different algorithms and
report the performance. As shown in Table 8, 3D OpenPose surpasses other algo-
rithms, which we attribute to its capability in 3D keypoint reconstruction. By
extracting richer pose information compared to others, it enhances the learning
capabilities of PoseRAC. Thus, we choose 3D OpenPose as the Pose Estimator.

4.4 More Analyses of the Pose-Action Modeling

In our method, the accurate Pose-Action Trigger is highly dependent on accurate
Pose-Action Modeling. Therefore, we validate the salient pose recognition ability
of Pose-Action Modeling. Specifically, we extract frames where the two salient
poses of all repetitive actions appear in each video and input them into the
network to obtain outputs from the Decoder. We also annotate the classification
label of these frames. We compare our model with additional baselines mentioned
in Sect. 4.3 and evaluate the recognition accuracy on all datasets. Furthermore,
we assess the recognition accuracy on Countix for the open-set scenario.

As shown in Table9, pose-level baselines outperform the image-level base-
lines, further demonstrating the effectiveness of introducing pose. Moreover,
using Transformer as the Encoder yields the highest accuracy across all datasets
(0.93 on RepCount, 0.82 on UCFRep, and 0.83 on Countix), enabling the follow-
ing module to successfully complete the counting task. Similar conclusions can
be drawn from the qualitative evaluation shown in Fig.5, where we utilize our
model to recognize poses in each frame. It is evident that our model accurately
recognizes the salient poses. In the open-set scenario, the accuracy of image-level
baselines is almost zero, while the accuracy of our method is 0.49. However, it

ﬁ
" s - 3 e 53 ¢ e 4

(c) Squat (d) Pull up

Fig. 5. Qualitative evaluation. The histogram represents the scores of pose recognition,
where the red histogram and the blue histogram represent that the detection of the
current frame corresponds to salient poses I and II, respectively. (Color figure online)



268 Z. Yao and Y. Zou

is still far below that of the close-set performance, showing the challenge of
open-set pose recognition, which merits further research in the future.

5 Conclusion

In this paper, we focus on the valuable yet recently underexplored repetitive
action counting task. Considering the shortcomings of previous methods on
addressing the periodic representation, we introduce pose modality into this
task for the first time. By analyzing the relationship between human poses and
actions, we present a novel concept called Salient Pose to effectively repre-
sent each action. Furthermore, we propose a new approach called PoseRAC,
which includes Pose-Action Modeling and Pose-Action Trigger to efficiently
count actions based on our salient poses. Leveraging generative models and an
off-the-shelf text encoder enables our model to perform zero-shot and open-set
counting, respectively, showcasing further innovation in this area. Comprehensive
experiments demonstrate that our approach yields promising results and opens
up new avenues for future research in the field of repetitive action counting.

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lu¢ié¢, M., Schmid, C.: Vivit: a video
vision transformer. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6836-6846 (2021)

2. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., Grund-
mann, M.: Blazepose: on-device real-time body pose tracking. arXiv preprint
arXiv:2006.10204 (2020)

3. Briassouli, A., Ahuja, N.: Extraction and analysis of multiple periodic motions in
video sequences. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1244-1261 (2007)

4. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime
multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern
Anal. Mach. Intell. 43(1), 172-186 (2021). https://doi.org/10.1109/TPAMI.2019.
2929257

5. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700
human action dataset. arXiv preprint arXiv:1907.06987 (2019)

6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299-6308 (2017)

7. Davis, J., Bobick, A., Richards, W.: Categorical representation and recognition of
oscillatory motion patterns. In: Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 628-635.
IEEE (2000)

8. Dong, J., Sun, S., Liu, Z., Chen, S., Liu, B., Wang, X.: Hierarchical contrast for
unsupervised skeleton-based action representation learning. In: Proceedings of the
AAAT Conference on Artificial Intelligence, vol. 37, pp. 525-533 (2023)

9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)


http://arxiv.org/abs/2006.10204
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
http://arxiv.org/abs/1907.06987
http://arxiv.org/abs/2010.11929

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

PoseRAC: Enhancing Repetitive Action Counting with Salient Poses 269

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: Counting out
time: Class agnostic video repetition counting in the wild. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10387—
10396 (2020)

Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 203-213 (2020)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

Hu, H., Dong, S., Zhao, Y., Lian, D., Li, Z., Gao, S.: Transrac: encoding multi-scale
temporal correlation with transformers for repetitive action counting. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 19013-19022 (2022)

Huang, S., Ying, X., Rong, J., Shang, Z., Zha, H.: Camera calibration from periodic
motion of a pedestrian. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3025-3033 (2016)

Jiang, T., et al.: Rtmpose: real-time multi-person pose estimation based on
mmpose. arXiv preprint arXiv:2303.07399 (2023)

Levy, O., Wolf, L.: Live repetition counting. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3020-3028 (2015)

Li, K., et al.: Uniformerv2: spatiotemporal learning by arming image ViTs with
video uniformer. arXiv preprint arXiv:2211.09552 (2022)

Li, X., Li, H., Joo, H., Liu, Y., Sheikh, Y.: Structure from recurrent motion: from
rigidity to recurrency. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3032-3040 (2018)

Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: TAM: temporal adaptive module for
video recognition. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 13708-13718 (2021)

Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11) (2008)

Pogalin, E., Smeulders, A.W., Thean, A.H.: Visual quasi-periodicity. In: 2008 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1-8. IEEE (2008)
Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: International Conference on Machine Learning, pp. 8748-8763.
PMLR (2021)

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents, 2022. arXiv:2204.06125 7 (2022)
Ran, Y., Weiss, 1., Zheng, Q., Davis, L.S.: Pedestrian detection via periodic motion
analysis. Int. J. Comput. Vision 71, 143-160 (2007)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684-10695 (2022)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in Neural Information Processing Systems, vol. 27
(2014)

Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learn-
ing for human pose estimation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5693-5703 (2019)


http://arxiv.org/abs/2303.07399
http://arxiv.org/abs/2211.09552
http://arxiv.org/abs/2204.06125

270

28.

29.

30.

31.

32.

33.

34.

Z. Yao and Y. Zou

Thangali, A., Sclaroff, S.: Periodic motion detection and estimation via space-time
sampling. In: 2005 Seventh IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05)-Volume 1, vol. 2, pp. 176-182. IEEE (2005)

Xiao, F., Lee, Y.J., Grauman, K., Malik, J., Feichtenhofer, C.: Audiovisual slowfast
networks for video recognition. arXiv preprint arXiv:2001.08740 (2020)

Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose: simple vision transformer baselines
for human pose estimation. arXiv preprint arXiv:2204.12484 (2022)

Zhang, H., Xu, X., Han, G., He, S.: Context-aware and scale-insensitive temporal
repetition counting. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 670-678 (2020)

Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3836-3847 (2023)

Zhang, Y., Shao, L., Snoek, C.G.: Repetitive activity counting by sight and sound.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14070-14079 (2021)

Zhou, H., Liu, Q., Wang, Y.: Learning discriminative representations for skele-
ton based action recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10608-10617 (2023)


http://arxiv.org/abs/2001.08740
http://arxiv.org/abs/2204.12484

	PoseRAC: Enhancing Repetitive Action Counting with Salient Poses
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Model Overview
	3.2 Pose-Action Modeling
	3.3 Training Data Generation
	3.4 Open-Set Scenario Generalization
	3.5 Pose-Action Trigger
	3.6 Training Strategies

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparisons with Previous Methods
	4.3 Ablation Studies
	4.4 More Analyses of the Pose-Action Modeling

	5 Conclusion
	References


