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Abstract. Repetitive action counting aims to count the number of peri-
odic actions in a video, offering significant application values for human 
activities. However, this task has not been extensively explored, and pre-
vious methods struggle to address the periodic representation. Through 
an analysis of the relationship between human poses and actions, we 
present a novel concept called Salient Pose, which effectively repre-
sents each action. By further linking these salient poses and repetitive 
actions, we introduce a new approach for repetitive action counting called 
PoseRAC, to model the relationship between salient pose and actions 
and complete the counting task based on salient poses. Leveraging the 
foundation generative models, our model can perform zero-shot predic-
tions without using any training set. Furthermore, by incorporating an 
off-the-shelf text encoder, our model can count unseen actions in an open-
set setting. Our approach achieves state-of-the-art performance on three 
mainstream benchmarks: RepCount, UCFRep, and Countix. 

Keywords: Repetitive Action Counting · Human Pose Estimation · 
Foundation Generative Model 

1 Introduction 

Periodic movement is widespread in nature, encompassing various human activ-
ities. In computer vision, the detection of periodic human actions plays a crucial 
role, such as counting physical exercise movements for effective fitness planning. 
Additionally, counting repetitive/periodic movements is essential for analyzing 
human actions, including tasks such as pedestrian detection [ 24], camera cal-
ibration [ 14], and 3D reconstruction [ 18]. Given the significance of accurately 
counting periodic movements, academia proposes a task named “repetitive action 
counting”, which outputs the number of any repetitive action in a video. 

Despite its importance, the field of repetitive action counting has not yet 
been fully explored. Existing methods [ 10,13,31] have mainly relied on intri-
cate and high-cost temporal feature modeling to capture periodic patterns in 
videos. Typically, they pre-calculate the heat map on each frame across a video, 
then regress the counting value, often by counting the peak points in these heat 
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Fig. 1. Our proposed Pose-Action Trigger can perform action counting. Specifically, if 
two salient poses of the current action appear sequentially, it means that this action is 
occurring, and the counting value can be incremented by one. 

maps. However, these methods often overlook two key characteristics of repet-
itive action counting, leading to suboptimal results. 1) Videos vary in length. 
For longer videos, which means more frames, calculating the heatmap frame-by-
frame incurs a significant computational cost. Additionally, global modeling can 
introduce a lot of noise, leading to inaccurate counting. 2) The cycle lengths of 
different types of actions also vary. When determining whether an action has 
completed a cycle, the network struggles to accommodate all types of actions, 
resulting in inaccurate counts. These two factors render temporal modeling less 
efficient in accurately representing periodic features in videos, suggesting the 
need for alternative approaches to tackle this task. 

Meanwhile, research in human pose estimation [ 2,30] is advancing rapidly. We 
observe that poses are the most essential factors in an action and can remain 
unaffected by contextual nuisances, such as background and lighting changes. 
Thus, an intuitive idea is linking human pose with action-related tasks. While 
recent studies have utilized human poses in action recognition [ 8,34], it has not 
been explored in repetitive action counting task, due to the distinct differences 
between the two tasks. Action recognition requires coarse-grained classification 
results, whereas action counting demands the fine-grained repetitive counts of 
the action. One feasible solution is to extract the poses from each frames and 
then perform temporal modeling on these poses. Although computational costs 
may be reduced when working with poses compared to directly on video frames, 
such methods are still ineffective in addressing the characteristics of varying cycle 
lengths of actions. Thus, this inspires us to ask: How to effectively link pose with 
action to achieve a breakthrough in repetitive action counting task? 

By observing the relationship between human poses and actions, we notice 
that each action consistently involves its own distinctive poses at certain 
moments, serving to differentiate it from other actions. We define these dis-
tinctive poses as salient poses, and pre-define them for each action by analyz-
ing their pose characteristics and capturing their most distinct moments. For 
instance, as illustrated in Fig. 1(a), the front raise action includes salient pose
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raising the arms, which distinguishes it from other actions, such as pull up or 
situp. To take a step further, considering all actions (more than fifty) within three 
mainstream benchmarks in the field of counting, we find each action can be dis-
tinguished by manually assigning two salient poses and using salient poses can 
significantly reduce the learning complexity. Moreover, once we have explicitly 
linked the two salient poses to each action, we can train the model to implicitly 
learn more intrinsic relationships between different actions and poses. When the 
model encounters new, unseen actions, it can still identify the salient poses of 
these actions, allowing it to generalize to unseen action classes. 

Based on these findings, we propose a new perspective to represent and count 
actions based on the salient poses, called Pose-Action Trigger. Within this 
framework, as shown in Fig. 1(b), an action is counted when two salient poses 
appear in sequence, increasing the action counting value by one. In contrast 
to common methods that represent actions using redundant RGB frames, the 
key advantage of our framework lies in its selective use of specific frames to 
capture salient poses, simplifying action representation. This simple yet effective 
mechanism not only allows us to ignore irrelevant backgrounds and focus on the 
essential poses, but also significantly reduces computational costs. 

Furthermore, we introduce the first pose-level network called Pose Saliency 
Network for Repetitive Action Counting (PoseRAC). It decouples the video-
level action counting into two stages: 1) Pose-Action Modeling, and  2) Pose-
Action Trigger. The second stage has been discussed in Fig. 1. In the first stage, 
we want the model to capture the relationship between the pose of each frame 
and its corresponding action, and infer each importance score of each frame on 
the action. To this end, we introduce Stable Diffusion [ 25] and ControlNet [ 32] to  
generate training data conditioned on our pre-defined salient poses and encour-
age the model to give higher scores on salient poses. This further allows us to 
achieve “zero-shot” 1 prediction, as we can train the model without using any 
real training set. Moreover, after training with a sufficient number of manually 
designed salient poses on specific (seen) actions, we want the model to have the 
potential to generalize to unseen actions. To achieve this, we additionally intro-
duce the CLIP [ 22] Text Encoder to obtain semantic information about unseen 
actions and incorporate it into our model. 

We summarize our contributions in three-fold: 

– To the best of our knowledge, we are the first to introduce salient pose into the 
action counting task, and propose a two-stage framework, called PoseRAC, 
including Pose-Action Modeling and Pose-Action Trigger to efficiently repre-
sent and count actions with two salient poses. 

– As for the Pose-Action Modeling, we only employ the generative model to 
generate pose-related training images, thus enabling zero-shot prediction. And 
we integrate the CLIP text encoder to incorporate additional action semantic 
information to facilitate the generalization of PoseRAC for open-set unseen 
actions.

1 Starting from the CLIP [22], the term of zero-shot is used in a broader sense to study 
generalization to unseen datasets. 
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– Our PoseRAC achieves state-of-the-art performance on three mainstream 
action counting benchmarks: RepCount, UCFRep, and Countix, far outper-
forming all current methods. 

2 Related Work 

Repetitive Action Counting. Early works focus on compressing the motion 
field into one-dimensional signals to recover the repetition, such as Fourier anal-
ysis [ 3,21], peak detection [ 28], classification [ 7,16]. However, these methods 
cannot tackle non-stationary scenarios in the context of repetitive actions. 

Recently, Context [ 31] proposes a context-aware regression network accom-
panied by a coarse-to-fine refinement strategy for varying action cycles. Mean-
while, RepNet [ 10] integrates a temporal self-similarity matrix into the process 
of counting. Moreover, [ 13] encodes multi-scale temporal correlations to handle 
both high- and low-frequency actions. In contrast to previous works, we introduce 
the pose modality into this task, opening up a new avenue for action counting. 

Pose in Action-Related Tasks. Existing studies have explored various modal-
ities for action-related tasks, such as RGB frames [ 6], optical flows [ 26], and audio 
waves [ 29]. While human pose has received growing interest due to its action-
focusing nature and resistance to background nuisances, such as skeleton-based 
action recognition [ 8,34]. In this paper, we explore the relationship between pose 
and action to effectively address the action counting task. 

Foundation Generative Model. Based on the diffusion model, Stable Diffu-
sion [ 25], DALL-E2 [ 23], and others showcase impressive abilities in generating 
images based on text prompts. Recently, ControlNet [ 32] proposes a practical 
image editing solution, showing controllable image generation from various con-
ditioning signals, such as depth, segmentation, human pose, etc. 

3 Methodology 

Given a video V = {xi}T 1 ∈ RC×H×W ×T with T RGB frames, action counting 
model aims to predict a value M, which is the number of repetitive actions. 

3.1 Model Overview 

Previous works mainly relied on high-cost temporal feature modeling, which 
ignores the action-focused nature of the human pose. So our starting point is to 
introduce poses to better represent actions and reduce complexity. As demon-
strated in Fig. 2, our PoseRAC decouples the counting into two stages: 

Stage 1. Pose-Action Modeling (Sect. 3.2 to Sect. 3.4). We model the rela-
tionship between the pose of each frame with their corresponding action classes. 
Specifically, the pose of each frame is extracted and then encoded to generate the
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Fig. 2. PoseRAC is a two-stage action counter. In first stage, it models the relationship 
between salient poses and actions, where Stable Diffusion and ControlNet allow us to 
perform zero-shot prediction without using the training set, and the CLIP Text Encoder 
facilitates open-set generalization. In second stage, there is a training-free Pose-Action 
Trigger to perform video-level action counting. 

latent embedding. The embedding is subsequently decoded using Action Queries 
via the cross-attention process, resulting in scores for each action class. 

To obtain the training data containing salient poses, we use Stable Diffusion 
and ControlNet to generate sufficient data for training. This process allows us to 
train the model without accessing any samples from the training set, thus achiev-
ing zero-shot prediction. Moreover, we incorporate the semantic information of 
unseen action classes into the Action Queries to facilitate pose recognition for 
any unseen actions. This approach enhances the open-set generalization. 

Stage 2. Pose-Action Trigger (Sect. 3.5). We apply an pre-trained Action 
Recognizer to obtain video-level action class, and combine pose recognition scores 
of each frame corresponding this class. We set two threshold to distinguish the 
salient pose I and II, and scan through all the frames. Each sequential appearance 
of two salient poses indicates an increment in the count value by one. 

3.2 Pose-Action Modeling 

Pose Estimator. For the given RGB frame x, a pre-trained pose estimator [ 4] 
converts it into pose keypoints sequence p ∈ RD×K , where K represents the 
number of keypoints, and D is the dimension of each keypoint. 

Pose-Wise Encoder. We encode each pose into latent embedding using a L-
layer Transformer. For the pose p ∈ RD×K , we further define it as {kj}K 

1 , where 
kj ∈ RD, and embed it to obtain richer information via a MLP network E: 

Z0 = [E(k1), E(k2), . . . ,  E(kK)]T , (1) 

where E(kj) ∈ RD′
is the embedding. Z0 ∈ RK×D′

is further encoded through L 
layers of self-attention in the Transformer to obtain the features ZL ∈ RK×D′

.
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Pose-Text Recognition Decoder. Suppose that the number of actions is C. 
For each pose, the Decoder takes ZL ∈ RK×D′

and C Action Queries with 
learnable embeddings ẑ0 ∈ RC×D′

as input. It then transforms these queries 
into action scores S ∈ RC , which represents the scores for each action. 

To achieve decoding, we employ cross attention to connect the Encoder fea-
tures ZL with Action Queries ẑ0, where the query (Q) originates from ẑ0, and  
the key (K) and value (V) are derived from ZL. After Ldec layers of decoding, 
we obtain the output ẑLdec ∈ RC×D′

. Finally, we get the score of each action 
class S ∈ RC using the following module: 

S = σ(Squeeze(Linear(ẑLdec ))), (2) 

where the output channel of Linear is 1, and σ represents Sigmoid activation. 

3.3 Training Data Generation 

To obtain the data containing salient pose, we apply generative models, partic-
ularly Stable Diffusion [ 25] and ControlNet [ 32], to generate training data. 

After pre-defining two salient poses for each action class, we have 2 × C 
salient poses, which also serve as the pose conditions {ci}2×C 

i=1 used to control 
Stable Diffusion in generating k training images for each salient pose. For a single 
pose condition c, we can generate the synthetic image xi using the ControlNet 
Stable Diffusion G as follows: xi = G(zi, p, c), where zi ∼ N  (0, I) is random 
noise, and p represents the text prompt. Finally, we can obtain our training set 
D = {(xi, yi)}2×C×k 

i=1 , which contains 2 × C × k images. Here, yi represents the 
label for each image, specifically indicating both the action and salient pose. 

3.4 Open-Set Scenario Generalization 

Besides the close-set setting, we aim to facilitate the generalization to previously 
unseen action classes in an open-set setting. To achieve this, we apply an off-
the-shelf text encoder to encode the action classes and obtain rich semantic 
information, which is then assigned to the Action Queries. 

Specifically, for the unseen action classes {ci}Copen 

i=1 , where Copen represents 
the number of unseen actions, we utilize the template such as “there is a human 
doing {action name} action” to create each prompt. Subsequently, we apply the 
CLIP Text Encoder [ 22] to encode these prompts and generate the embedding 
ẑ0 open ∈ RCopen×D′

, capturing the semantic information of these open-set action 
classes. These embeddings are assigned to the Action Queries in the open-set 
scenario. We use the obtained ẑ0 open to conduct cross-attention with the pose 
feature ZL, enabling open-set pose-action modeling. 

3.5 Pose-Action Trigger 

The above modules are both in the first stage, which means that the output 
S represents the classification for a single pose, as well as a single frame. To
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perform video-level counting, we aggregate the scores of all frames to obtain the 
video score matrix Ŝ ∈ RC×T , where T represents the number of frames in the 
current video. Meanwhile, we apply an off-the-shelf Action Recognizer [ 17] to  
conduct video-level action recognition, and obtain the action class C. We then 
extract the scores SC ∈ RT for C from Ŝ. 

We design a lightweight Pose-Action Trigger, which has no trainable param-
eters and a time complexity of only O(n). First, we define upper and lower 
bounds to separate the scores of two salient poses. This method groups non-
salient poses in the middle and classifies the salient poses at either end. Next, 
we scan all frames to count the sequential occurrences of the two salient poses 
for this action class. Each sequential occurrences indicates an increment in the 
count by one. Through this module, we can obtain the final action count M. 

3.6 Training Strategies 

The modules that require training include the Pose-wise Encoder and the Pose-
Text Recognition Decoder. In terms of Action Queries, we have two settings: 
1) Close-set, where the Action Queries are randomly initialized and can be 
tuned during training, eliminating the need for text encoder; and 2) Open-set, 
where we utilize the embedding of the CLIP Text Encoder to assign the Action 
Queries and freeze them throughout the training process. 

First, we transform the label yi of each image into the vector y′
i ∈ RC . In  

our PoseRAC, the target for the salient pose I is set to 1, while the target for 
salient pose II is set to 0. The targets for all other negative samples are set to 0.5. 
For example, if C = 5  and  yi represent the salient pose I of the second action, 
then y′

i = [0.5, 1.0, 0.5, 0.5, 0.5]. Similarly, if yi represents the salient pose II of 
the third action, then y′

i = [0.5, 0.5, 0.0, 0.5, 0.5]. Then, we calculate the Binary 
Cross Entropy Loss between y′

i ∈ RC and its corresponding output Si ∈ RC in 
the Decoder, with the batch size set to N . This can be defined as follows: 

Lbce = − 1 
N 

N∑

i=1 

( 1 
C 

C∑

j=1 

loss(i, j)), (3) 

loss(i, j) =  y′
ij log Sij + (1  − y′

ij) log(1 − Sij). (4) 

Furthermore, we employ the Triplet Margin Loss to train only the Encoder, 
with the aim of enhancing its ability to produce more representative features 
ZL given a pose. We select anchors a, same salient pose positive samples p, and  
different salient poses negative samples n in a batch. Cosine Similarity (CS) is 
used to measure the distance between features. It can be expressed as: 

Ltri = max(CS(a, p) − CS(a, n) + margin, 0). (5) 

We pay more attention to hard samples, where the distances between anchors 
and negative samples are even smaller than those of positive samples. After 
training, the salient poses of each action can be distinguishable, and can cluster 
in the high-level space.
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Table 1. Detailed information for three benchmarks. 

Dataset Categories 
Number of Videos 
Train Val Test 

RepCount [13] 9 758 129 152 
UCFRep [31] 23 421 105 — 
Countix [10] 57 4414 1406 2555 

At last, our overall training combines two losses: 

L = Lbce + αLtri, (6) 

where α represents the weight factor. 

4 Experiments 

4.1 Experimental Setup 

Datasets and Close and Open-Set Setting. We conduct comprehensive 
experiments on three mainstream benchmarks for repetitive action counting, 
namely RepCount, UCFRep, and Countix. The detailed information is shown in 
Table 1. 

In the close-set setting, we compare with previous state-of-the-art methods 
on the test set of RepCount and Countix, and the validation set of UCFRep. 

In the open-set setting, we evaluate the generalization of our method when 
handling unseen actions. In this scenario, we use Countix dataset and re-split 
the training set and validation set to ensure the classes in them are disjoint. 

Evaluation Metrics. We demonstrate the superiority of our method on two 
widely used metrics in this task, which are Off-By-One (OBO) count error 
and Mean Absolute Error (MAE). OBO measures the error rate of repetition 
count over the entire dataset, while MAE represents the normalized absolute 
error between the ground truth and the prediction. They can be defined as: 

OBO = 1 
N 

N∑

i=1 

[|c̃i − ci| ≤  1] (7) 

MAE = 1 
N 

N∑

i=1 

| ̃ci − ci| 
c̃i 

(8) 

where c̃ is the ground truth, ci is our prediction, and N is the video number. 

Implementation Detail. We compare with some state-of-the-art action count-
ing methods: RepNet [ 10], Context [ 31], Sight & Sound [ 33], and TransRAC [ 13]. 
Additionally, we use video understanding methods [ 1,11,19] as baselines, adapt-
ing their output layers according to the TransRAC. Except for RepNet and Sight
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Table 2. Pre-defined salient poses for each action in datasets. Due to space limitations, 
we take the RepCount dataset as an example. 

Action Salient Pose I Salient Pose II 

battle rope 
raising left hand, lowering right hand, raising right hand, lowering left hand, 
and performing a battle rope action and performing a battle rope action 

bench pressing curling up legs stretching legs 
front raise putting down the arms raising the arms 
jumping jacks standing upright and arms-down jumping up and arms-upward 
pommel horse body leaning to the left body leaning to the right 
pull up hanging on the arms pulling up the arms 
push up lying prone with arms straight lying prone and bending arms 
situp lying down sitting 
squat standing upright squatting 

& Sound, all other methods cannot deal with the Countix dataset as it do not 
provide annotations for each action cycle. For consistency, we follow the optimal 
hyperparameter settings mentioned in the papers of each method. 

In our method, we utilize 3D OpenPose [ 4] for Pose Estimation. We design 
a 6-layer Transformer for Encoder and a 2-layer Transformer for Decoder. We 
select UniFormerV2-L [ 17] as Action Recognizer, which is pretrained on Kinetics-
700 [ 5]. We pre-define two salient poses for each action in three datasets. Due to 
space limitations, we take the RepCount dataset as an example to show the pre-
defined salient poses of each action in Table 2. During training data generation, 
we use OpenPose Editor 2 to edit these salient poses, and use Stable Diffusion 
and ControlNet to generate 1k images for each salient pose. 

We report both zero-shot and few-shot performance. In zero-shot, we gen-
erate synthetic data for training without using any real training set. In few-shot, 
along with the synthetic data, we extract 200 frames containing pre-defined 
salient poses for each action from the training set, to fine-tune our model. 

4.2 Comparisons with Previous Methods 

Close-Set Performance. As shown in Table 3, PoseRAC outperforms existing 
methods in terms of performance. First, when we only pretrain the PoseRAC 
with synthetic images, the zero-shot performance exceeds that of previous fully-
supervised methods on the RepCount dataset, with an OBO metric of 0.43 
compared to the 0.29 of TransRAC. When fine-tuning with a few of samples 
from the training set, the few-shot performance is even higher, with the OBO 
metric surpassing 0.5 for the first time. Similar superiority can be observed on 
the UCFRep and Countix datasets. 

Here, we delve into why our approach is effective. Previous methods primar-
ily extract intricate temporal features from a video clip, which are challenging
2 https://github.com/ZhUyU1997/open-pose-editor. 

https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
https://github.com/ZhUyU1997/open-pose-editor
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Table 3. Comparison on three datasets in both close-set and open-set settings. The 
best results are highlighted in bold, and the second best is underlined. Our approach 
shows superiority in both zero-shot (not see the training set) and few-shot (only a 
few frames) settings. †: As RepCount and UCFRep solely consist of RGB frames, this 
approach is a sight-only model for handling these datasets. 

Method Method 
RepCount UCFRep Countix Countix (Open) 

MAE ↓ OBO ↑ MAE ↓ OBO ↑ MAE ↓ OBO ↑ MAE ↓ OBO ↑ 
X3D [11] 0.910 0.106 0.882 0.126 — — — — 
TANet [19] 0.662 0.099 0.691 0.103 — — — — 
ViViT [ 1] 0.676 0.103 0.655 0.098 — — — — 
RepNet [10] fully 0.995 0.013 0.998 0.009 0.364 0.303 0.723 0.195 
Context [31] 0.879 0.155 0.147 0.790 — — — — 
Sight & Sound† [33] 0.732 0.196 0.143 0.800 0.307 0.511 0.760 0.188 
TransRAC [13] 0.443 0.291 0.441 0.430 — — — — 

PoseRAC (Ours) 
zero-shot 0.328 0.425 0.319 0.526 0.403 0.339 0.692 0.226 
few-shot 0.226 0.570 0.146 0.803 0.305 0.530 0.616 0.317 

to be trained well to represent periodic movements. On the other hand, our app-
roach introduces salient pose into this task and further decouples this complex 
temporal process into single-frame pose recognition. In our approach, there is 
no need for training temporal modeling, making it considerably less challenging 
to achieve effective training. Moreover, our Pose-Action Trigger can complete 
counting based on salient poses, which is robust to interruptions during actions 
and inconsistent action cycles of different action classes. 

Open-Set Performance. Moreover, we also evaluate the open-set action count-
ing ability of different methods on Countix. As demonstrated in Table 3, due 
to the more challenging open-set setting, the performance of RepNet and Sight 
& Sound is much lower compared to the regular setting. However, our method 
consistently outperforms previous methods, achieving an OBO metric of 0.32 
compared to the 0.20 of RepNet. This is attributed to the ability of our method 
to link salient poses with actions. Specifically, PoseRAC learns the relationship 
between manually pre-defined salient poses and their corresponding actions dur-
ing training, enabling it to model the relationship between salient poses and 
unseen actions. By further incorporating the semantic information of actions, 
our PoseRAC can effectively recognize the salient poses of those unseen actions. 

4.3 Ablation Studies 

Because the RepCount dataset is currently the highest quality dataset, we con-
duct ablation studies on the validation set of RepCount, to analyze some core 
ideas of PoseRAC. Here we focus on the close-set and few-shot setting.



PoseRAC: Enhancing Repetitive Action Counting with Salient Poses 265

Table 4. Performance of different base-
lines. Pose-level: Replace the Encoder. 
Image-level: Replace both the Pose Esti-
mator and the Encoder 

Baselines MAE ↓ OBO ↑ 

MLP 0.316 0.486 

Pose-level 1DCNN 0.357 0.439 

Transformer 0.221 0.576 

Image-level 
ResNet-50 [12] 0.762 0.103 

ViT-32 [ 9] 0.723 0.116 

Table 5. Comparison of different α for 
training losses 

Loss α MAE ↓ OBO ↑ 

Lbce only — 0.339 0.450 

0.01 0.221 0.576 

Lbce + αLtri 0.05 0.259 0.542 

0.1 0.276 0.516 

Table 6. Comparing different assign-
ments of Action Queries  on  the RepCount  
and UCFRep datasets in the close-set set-
ting 

Action Queries 
RepCount UCFRep 

MAE ↓ OBO ↑ MAE ↓ OBO ↑ 

Randomly 0.221 0.576 0.146 0.803 

Text Embedding 0.319 0.483 0.287 0.639 

Table 7. Comparing different assign-
ments of Action Queries  on  Countix in  
both close and open set settings 

Action Queries Scenario 
Countix 

MAE ↓ OBO ↑ 

Randomly 
Close-set 0.310 0.516 

Open-set — — 

Text Embedding 
Close-set 0.427 0.409 

Open-set 0.619 0.305 

Additional Baselines for Encoder. We consider two dimensions for addi-
tional baselines. 1) We use different structures in the Pose-wise Encoder to 
observe changes in performance. We select MLP, CNN, and Transformer, and 
ensure that their parameters are set to be close to each other for a fair compari-
son. 2) We replace both the Pose Estimator and Pose-wise Encoder with image-
classification baselines. This involves directly extracting features from each RGB 
frame without estimating human pose. Through this, we aim to validate the 
effectiveness of introducing pose information into repetitive action counting. 

As demonstrated in Table 4, image-classification baselines perform poorly 
because the RGB frame contains much irrelevant information, leading to high 
difficulty in extracting the action information. This further demonstrates the 
effectiveness of linking pose with action. On the other hand, in pose-level base-
lines, we observe that the performance of Transformer is slightly higher. We 
attribute it to the self-attention between different pose keypoints, while com-
mon MLP and CNN cannot model the relationship between two distant points 
effectively. 

The Number of Training Data. Here we consider the impact of the amount of 
training data, especially both the synthetic image and the extracted frames from 
training set. To facilitate comparison, we set different numbers of synthetic data 
while keeping the number of real data fixed at 200 for each pose. Simultaneously, 
we maintain the number of synthetic data at 1k for each pose while varying the 
number of real data. As shown in Fig. 3, as the number of both synthetic and real 
data increases, the OBO metric consistently improves. Especially, increasing the 
number of synthetic data from 0.25k to 1k results in a significant improvement,
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Fig. 3. OBO metric with various train-
ing data volume.  Left: the number of real 
data is fixed at 200. Right: the  number  
of synthetic data is fixed at 1k. 

Fig. 4. T-SNE visualization of the 
embedding features extracted by the 
Encoder trained (a) without or (b) 
with triplet margin loss. 

Table 8. Comparison among different 
pose estimators. In the end, we select 3D 
OpenPose for its superiority 

Pose Estimator MAE ↓ OBO ↑ 

HRNet [27] 0.269 0.496 

BlazePose [ 2] 0.240 0.561 

Vitpose [30] 0.243 0.551 

RTMPose [15] 0.241 0.562 

3D OpenPose [ 4] 0.221 0.576 

Table 9. Comparison of all baselines 
for the Pose-wise Encoder in Pose-Action 
Modeling accuracy 

Datasets 
Image-level Pose-level 

ResNet ViT MLP CNN Trans 

RepCount 0.52 0.61 0.83 0.69 0.93 

UCFRep 0.43 0.47 0.68 0.59 0.82 

Countix (close) 0.45 0.51 0.71 0.60 0.83 

Countix (open) 0.09 0.09 0.30 0.26 0.49 

from around 0.4 to around 0.6. The performance can be further enhanced with 
more data, such as 0.35k real data. In this way, our method can significantly 
boost performance by generating more synthetic samples without the need for 
complex design. Considering both efficiency and performance, we set the number 
of synthetic and real data per salient pose to 1k and 0.2k, respectively. 

Effectiveness of Training Losses. We employ two loss functions to train our 
model. As shown in Table 5, we compare the performance with and without the 
triplet margin loss using different values of α. While our model can be effectively 
trained with binary cross-entropy loss alone, the addition of the triplet margin 
loss leads to improvement. We observe that the optimal value for α is 0.01, 
primarily because the two losses have different numeric scales. 

Moreover, we select those frames in which the salient pose of each action 
appears (here we take salient pose II as the example), and use Pose Estimator and 
Pose-wise Encoder to extract their embedding features. We employ t-SNE [ 20] to  
visualize the first two principal components of these features. As shown in Fig. 4, 
after training with the triplet margin loss, the encoder enhances its ability to 
distinguish the salient poses of each class. 

Effectiveness of Text Encoder. We conduct experiments to observe the effec-
tiveness of text encoder. In close-set setting, we replace the randomly initialized 
Action Queries with the text embeddings from CLIP Text Encoder and retrain 
the model. As shown in Table 6 and Table 7, directly assigning the Action Queries 
to the text embeddings leads to a slight decrease in performance on all datasets 
because the trainable queries can be more representative. However, random ini-
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tialization cannot handle the open-set scenario, as shown in Table 7. The  text  
encoder can encode any unseen class, facilitating open-set pose recognition, give 
our PoseRAC the ability to generalize to any unseen actions in open-set scenario. 

Choice of Pose Estimator. Accurate action counting of PoseRAC relies on 
accurate pose estimation, so we compare several excellent pose estimatiors. Here, 
we replace the Pose Estimator in our PoseRAC with different algorithms and 
report the performance. As shown in Table 8, 3D OpenPose surpasses other algo-
rithms, which we attribute to its capability in 3D keypoint reconstruction. By 
extracting richer pose information compared to others, it enhances the learning 
capabilities of PoseRAC. Thus, we choose 3D OpenPose as the Pose Estimator. 

4.4 More Analyses of the Pose-Action Modeling 

In our method, the accurate Pose-Action Trigger is highly dependent on accurate 
Pose-Action Modeling. Therefore, we validate the salient pose recognition ability 
of Pose-Action Modeling. Specifically, we extract frames where the two salient 
poses of all repetitive actions appear in each video and input them into the 
network to obtain outputs from the Decoder. We also annotate the classification 
label of these frames. We compare our model with additional baselines mentioned 
in Sect. 4.3 and evaluate the recognition accuracy on all datasets. Furthermore, 
we assess the recognition accuracy on Countix for the open-set scenario. 

As  shown in Table  9, pose-level baselines outperform the image-level base-
lines, further demonstrating the effectiveness of introducing pose. Moreover, 
using Transformer as the Encoder yields the highest accuracy across all datasets 
(0.93 on RepCount, 0.82 on UCFRep, and 0.83 on Countix), enabling the follow-
ing module to successfully complete the counting task. Similar conclusions can 
be drawn from the qualitative evaluation shown in Fig. 5, where we utilize our 
model to recognize poses in each frame. It is evident that our model accurately 
recognizes the salient poses. In the open-set scenario, the accuracy of image-level 
baselines is almost zero, while the accuracy of our method is 0.49. However, it 

Fig. 5. Qualitative evaluation. The histogram represents the scores of pose recognition, 
where the red histogram and the blue histogram represent that the detection of the 
current frame corresponds to salient poses I and II, respectively. (Color figure online) 
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is still far below that of the close-set performance, showing the challenge of 
open-set pose recognition, which merits further research in the future. 

5 Conclusion 

In this paper, we focus on the valuable yet recently underexplored repetitive 
action counting task. Considering the shortcomings of previous methods on 
addressing the periodic representation, we introduce pose modality into this 
task for the first time. By analyzing the relationship between human poses and 
actions, we present a novel concept called Salient Pose to effectively repre-
sent each action. Furthermore, we propose a new approach called PoseRAC, 
which includes Pose-Action Modeling and Pose-Action Trigger to efficiently 
count actions based on our salient poses. Leveraging generative models and an 
off-the-shelf text encoder enables our model to perform zero-shot and open-set 
counting, respectively, showcasing further innovation in this area. Comprehensive 
experiments demonstrate that our approach yields promising results and opens 
up new avenues for future research in the field of repetitive action counting. 
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