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ABSTRACT

Graphs serve as fundamental representations for a diverse array
of complex systems, capturing intricate relationships and inter-
actions between entities. In many real-world scenarios, graphs
exhibit non-homophilous, or heterophilous, characteristics, chal-
lenging traditional graph analysis methods rooted in homophily
assumptions. Recent heterophilous methods frequently struggle
with noise in node attributes, which can degrade the quality of
graph representations and affect downstream task performance.
Common graph augmentations, while useful, often introduce bias
and irrelevant noise. This paper proposes a novel method, Robust
Heterophily Graph Learning via Uniformity Augmentation (RHGL-
UA), which incorporates uniformity in the augmentation process
through controlled random perturbations. This approach ensures a
more uniform distribution of representations across different layers
of the model. By adapting to data variations and learning more
diverse information, RHGL-UA significantly improves performance
on downstream tasks and stands out as the first practical robust
heterophily graph method using representation augmentation with
a theoretical guarantee. Extensive experiments demonstrate the
merit of our proposed method.
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1 INTRODUCTION

Graphs are robust mathematical structures with applications span-
ning various fields, including social networks, recommendation
systems, biological networks, and information propagation analy-
sis [4, 23, 29]. In numerous real-world situations, graphs inherently
exhibit diversity, comprising nodes and edges that symbolize differ-
ent entities and their interconnections [5, 30]. These relationships
often display non-homophilous, or heterophilous, traits, where
nodes with other different attributes are linked, posing challenges
to traditional analysis techniques based on homophily assumptions.
Homophily, the propensity of nodes with similar attributes to
connect, is widely studied in graph theory and social network anal-
ysis. However, many real-world graphs contradict this assumption
due to the intricate interplay of diverse attributes. For instance,
in a social network, individuals may connect not solely based on
shared characteristics, but also a combination of diverse factors, in-
cluding occupations, and geographic locations. Traditional analysis
methods [3, 6, 11, 19, 22] designed for homophilous graphs fail to
capture the underlying patterns within such heterophily graphs.
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Figure 1: The node classification in heterophilic graphs. The
dotted line connected with nodes A and B denotes some noisy
edges while the solid line is the normal edge.

In recent years, there has been an increasing acknowledgment
of the necessity to expand graph analysis techniques to accommo-
date heterophily graphs [21]. However, these methods often fail
to address the potential noise in the attributes as shown in Fig.1,
the dotted lines denote noisy connections, leading to subpar per-
formance in subsequent tasks. Such bias can degrade the quality
of graph representations and subsequently impair performance in
downstream tasks. Recent empirical design of graph-specific aug-
mentations, such as edge permutation and node dropout, has been
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one approach to enhance performance [27]. Yet, these augmenta-
tions introduce irrelevant noise and can lead to biased embeddings
that do not accurately reflect the true structure of the graph.

To alleviate the noise that may negatively impact representation
quality or the high bias of the node embedding via graph augmenta-
tion, this paper introduces the Robust Heterophily Graph Learning
via Uniformity Augmentation method (RHGL-UA). This method
aims to learn robust representations for heterophilous graphs by
enhancing the model’s robustness through the introduction of ran-
dom perturbations. Specifically, RHGL-UA enhances the model’s
learning capabilities by ensuring a more uniform distribution of
representations, achieved through the strategic addition of random
noise vectors at each layer of the model. The proposed uniformity
augmentation perturbations enable the model to adapt to a broader
range of data variations and learn more diverse information during
the training process, thereby improving the model’s performance
on downstream tasks. Our contributions are summarized as follows:

e To alleviate the noisy edges and highly biased node embed-
dings that may negatively impact representation quality, we
propose the RHGL-UA method to learn the robust represen-
tation for heterophilous graphs, enhancing model robustness
by ensuring a more uniform distribution of representations.
Our uniformity augmentation approach improves the learn-
ing capability of the model, achieving a more uniform repre-
sentation distribution by incorporating controlled perturba-
tions at each representation layer.
e We provide a complexity analysis, theoretical justification,
and extensive experimental results to demonstrate the effi-
cacy and advantages of our proposed method.

2 RELATED WORK

Heterophilic Graphs. There has been significant research inter-
est in enhancing the performance of graph neural networks on
heterophilic graphs [30]. Geom-GCN [17] is a geometric aggrega-
tion scheme for modeling structural information and long-range
dependencies ability in low-homophily graphs. Mixhop [1] designs
a graph convolutional layer that uses multiple powers of the adja-
cency matrix to learn general neighborhood mixing relationships.
ProtoGNN [8] augments node features with structural information
by learning multiple class prototypes for acquiring a global mes-
sage. LINKX [13] separates the embedding in the adjacent A and
node feature X, then operates their concatenated embedding by
multi-layer perceptrons and skip connection. However, these works
ignore that heterophilous graphs can contain noise that may nega-
tively impact representation quality. Different from these works, we
consider learning robust representations for heterophilous graphs.

Data Augmentation. Data augmentation usually refers to the
augmentation performed in the input space. Attribute masking,
edge permutation, and node dropout are common graph augmenta-
tion strategies [25]. Some works [9, 12] have suggested that Gauss-
ian data augmentation could utilize its robustness to adversarial
perturbations. Gaussian Data Augmentation (GDA) is proven to
help explore any direction to smooth the model confidence and
even improve accuracy [26]. However, these methods of graph aug-
mentation are verified to have a negative effect with the high bias
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embeddings [27]. Inspired by the work on understanding represen-
tation learning through alignment and uniformity on the hyper-
sphere [20], we aim to design a novel method to ensure a more
uniform distribution of representations across the layers of the
model to alleviate the noise. Different from these works, we learn
the uniformity property prefers a feature distribution that preserves
as much information of data as possible and directly optimizing
uniformity metrics often leads to better representations.
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Figure 2: Our method can make embeddings of nodes more
uniform in the orange region of Fig.1. The representations
of node B are augmented from isolation towards uniformity.

3 METHOD

Notations of Heterophily. Let G = (V, E) be a graph with n nodes.
Further let each node u € V have a class label k;, € {0, 1, ...,C — 1},
and Cy, denotes the set of nodes in k class. Then we give the measure
by referring to former work LINKX [13], which is defined as: hg =

ﬁ Zf:_ol [Ar - %]Jr , where [x]+ = max(x,0), and hy is the
uecy, du

class-wise homophily metric by = Z;C—kd
ueCy. “u

Proposed Method. Heterophilic Graph Learning methods han-
dle heterophilic graph data that take into account the diversity of
node and edge types in the graph. However, these methods have
certain limitations. Robust representations help uncover these hid-
den patterns, shedding light on unconventional relationships that
contribute to a deeper understanding of the system. Learning robust
representations aids in modeling how information spreads across
nodes with varying attributes, leading to more accurate simulations
of processes. These representations provide a deeper understanding
of the complex dynamics within such graphs.

Inspired by previous work [20], we believe that it is reasonable to
understand the introduction of random noise from the perspective
of uniformity representations. From this perspective, the reason
why adding random noise to the representation can obtain a more
even representation distribution is that the values of some dimen-
sions in random noise are close to zero, which plays a role in feature
selection. As shown in Fig.2, our method makes the representations
of node B augmented from isolation towards uniformity.

Firstly, we define the representation of node i at the h-th layer
as 0;(") . Then, we introduce a uniform random perturbation Al(h) .
This perturbation is random, which can help our model better
adapt to changes in the data, thereby improving the robustness
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of the model. We adjust the perturbation using the sign function

sign(v l( h) ), making the direction of the perturbation consistent with
the direction of the node representation. Finally, we obtain the new
representation of node i at the h-th layer after introducing the

random perturbation, denoted as (U;h))/, which is defined in:

1

Across all layers, we average the representations of node i to

h)\’ h . h)\ A (h)'
(vi( )) :vi( )+SIgn(vi( ))Al( Y,

obtain its representation at the final layer H, denoted as zzl.(H). The
purpose is to make the node representation integrate information
to enhance its globality. In addition, we introduce a global random
perturbation AE-1 and adjust it using the adjacency matrix A.
The adjacency matrix A can reflect the connection relationships
between nodes. By multiplying with the adjacency matrix, we can
incorporate the connection relationships of nodes into their repre-
sentations. Finally, we obtain the representation of node i at the

final layer H, denoted as U;H), which is calculated as follows:
(H) _ 1 2 (h)
v, = — v,
i H ; i ( 2)

o) = oh D) 4 7=

Introducing random perturbations can make the model meet a
wider range of data variations. This allows the model to learn more
diverse information in the training process. Moreover, these random
perturbations disrupted specific patterns in the data, preventing the
model from relying solely on those patterns. As a result, the model
learns a more uniform representation of the data distribution.

Complexity Analysis. The main computational cost of our
method comes from two parts: the calculation of the node represen-
tations and the addition of random noise vectors. For the calculation
of node representations, the complexity is O(Nd), where N is the
number of nodes in the graph and d is the dimension of the node
representation. For the addition of random noise vectors, the com-
plexity is O(Nd) as well. This is because we need to add a noise
vector to the representation of each node, and the noise vector has
the same dimension as the node representation.

Therefore, the overall complexity of our method is O(Nd) +
O(Nd) = O(Nd), which is linear with respect to the number of
nodes and the dimension of the node representation. For space
complexity, our method requires O(Nd) space to store the node
representations and the noise vectors. Therefore, the space com-
plexity is also O(Nd), which is manageable for large-scale graphs.

Theoretical Justification. We aim to explain the theoretical
basis for the robustness enhancement of heterophily graph learning
through our proposed method. Some work [14, 28] suggest that
a flatter loss landscape contributes to model robustness. Building
upon this insight, we argue that our method achieves this flattening
effect, thereby enhancing robustness. Inspired by previous work
[16] that combines the sharpness of loss landscape and PAC-Bayes
theory [15], we derive bounds on the expected error under cer-
tain assumptions. Assuming that the prior distribution P over the
weights is a zero mean, o2 variance Gaussian distribution, with
probability at least 1 — & over the draw of M graphs, the expected
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error of the network can be bounded as:
E Gy alL(O+8)] <=Ea[L(6+)]

®)

2M
\/KL(H +AJ|P) +1n 24
+4
M

We choose a uniform perturbation within embedding layers, given
that the input is fixed and it is equivalent to setting the perturbation
A to the weight 6 concerning its magnitude o = «||0||. Besides, we
substitute EA[L(6 + A)] with £L(0) + EA[L(0+ A)] — L(0). Then,
we could rewrite Eq.3 as:

Bl al L0+ D)] <= L£(0) + (Bl L(0+8)] - L(0)}

Expected sharpness

, 1 1 2M
+4 M(Z +In T)
It is obvious that Ex [ L(0 + A)] <= maxa [L(0 + A)] and the third

term 4,/ % ( i +1In %) is a constant. Thus, our method improves

4)

the worst-case sharpness of the loss landscape to the bound of the
expected error, demonstrating an enhancement in robustness.

4 EXPERIMENTS

Datasets. Our experimental evaluation is conducted on seven di-
verse datasets, which exhibit heterophilous characteristics. These
include a large-scale dataset, Penn94 which was introduced by Lim
et al. [13]. We adhere to the original train/validation/test splits as
proposed in their study. Additionally, we assess the performance
of our model on six other homophilous datasets: Film, Squirrel,
Chameleon, Cornell, Texas, and Wisconsin [17]. These datasets are
derived from various networks, including a subgraph of the film-
director-actor-writer network, a webpage dataset from computer
science domains, and specific topics from Wikipedia.

Experimental Setup. In the experimental setup, we benchmark
our method, RHGL-UA, against 11 baseline methods. These include
methods that rely solely on node features, such as MLP and LINK,
traditional GNN methods like GCN [11], GAT [19], GCNJK [24],
APPNP [10], and non-homophilous methods such as MixHop [1],
GPR-GNN [7], GCNII [2], LINKX [13]. Our RHGL-UA backbone
is LINKX [13]. All methods are trained using full batch gradient
descent for 500 epochs, and the test performance is reported based
on the highest validation performance. The performance metric
used in our experiments is classification accuracy.

Performance Comparison. To substantiate the efficacy of
our proposed method, we have conducted a comparative analysis
with the aforementioned approaches across a range of heterophilic
datasets. The comparative outcomes are systematically documented
in Table 1. As depicted in the final row of Table 1, our method, RHGL-
UA, surpasses the performance of state-of-the-art techniques on
the large-scale Penn94 dataset and achieves competitive (underline
is suboptimal) if not the best performance on other benchmark
datasets, except Texas. Specifically, our approach has demonstrated
a 0.8% enhancement in performance on the Penn94 dataset and
has outperformed LINKX, a leading method for non-homophilous
graphs, by 0.9%,1.3%, 2.7%,2.2%, and 6.5%, respectively. These find-
ings suggest that RHGL-UA can augment performance on both
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Table 1: The test accuracy is presented in all datasets. We give the heterophily metric hg for all datasets. They show that our
datasets are indeed heterophily. (M) denotes some (or all) hyperparameter settings run out of memory.

Penn94 (.046)  Film (.011)  Squirrel (.025) Chameleon (.062) Cornell (047) Texas (.001) Wisconsin (.094)
#Nodes 41,554 7,600 5,201 2,277 251 183 183
MLP 73.61 £ 0.40 34.50 £1.77 31.10 £ 0.62 41.67 £5.92 67.03 £6.16 70.81 + 4.44 71.77 £ 5.30
LINK 80.79 + 0.49 23.82 £ 0.30 59.75+0.74 64.21 £ 3.19 44.33 +£3.63 51.89 + 2.96 54.90 + 1.39
~ GCN ¢ 82.47+0.27 2686 2396 2818 5270 5216 4588
GAT 81.53 £ 0.55 28.45 30.03 42.93 54.32 58.38 49.41
GCNJK 81.63 £ 0.54 27.41 35.29 57.68 57.30 56.49 48.82
APPNP 74.33 £ 0.38 32.41 34.91 54.3 73.51 65.41 69.02
© MixHop  83.47+0.71 3222+234 4380+148  60.50+253  7351+634 77.84+7.73  7588+4.90
GPR-GNN 81.38 £ 0.16 33.12 £ 0.57 54.35 £ 0.87 62.85 £ 2.90 68.65 £ 9.86 76.22 £ 10.19 75.69 £ 6.59
GCNIL 82.92 + 0.59 34.36 £ 0.77 56.63 + 1.17 62.48 76.49 77.84 81.57
Geom-GCN-P (M) 31.63 38.14 60.90 60.81 67.57 64.12
LINKX 84.71 + 0.52 36.10 + 1.55 61.81 + 1.80 68.42 + 1.38 77.84 + 5.81 74.60 + 8.37 75.49 +£5.72
RHGL-UA (Ours) 85.51+0.43 37.00+0.91 63.15+0.76 71.18 + 2.58 80.00 = 10.74 76.22 £ 6.45 81.96 + 6.11

standard and large-scale datasets, thereby underscoring its robust-
ness and capacity for generalization across diverse graph structures.
Evaluation of Robustness. To evaluate the robustness, we
have subjected it to a series of controlled adversarial perturbations.
Specifically, we have introduced noise into the embedding gen-
erated by the LINKX model on the Penn94 dataset. The LINKX
model was trained under its standard configuration, without in-
corporating noise perturbations, and was subsequently tested with
the perturbed embedding. In contrast, our method adhered to the
original training and testing conditions without modification. The
results in Fig. 3 reveal a consistent performance advantage of our
method over the LINKX model across a spectrum of noise intensi-
ties. This comparative superiority underscores the robustness of
our approach in the face of adversarial perturbations, suggesting a
heightened resilience to noise and potential adversarial attacks.
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Figure 3: Evaluation of robustness. Baseline is LINKX model.

Uniformity Analysis. To ascertain the uniformity of embed-
dings, we have conducted a visual analysis of the Chameleon dataset
following the concatenation operation within the network. Specifi-
cally, we have employed t-distributed Stochastic Neighbor Embed-
ding (t-SNE) [18] to reduce the dimensionality of embeddings to
two dimensions, facilitating visualization. To elucidate the distribu-
tion of uniformity, as depicted in Fig. 4, the x and y axes represent
the scales of the two-dimensional features after unit sphere normal-
ization. Subsequently, we have utilized Kernel Density Estimation
(KDE) to estimate the probability density of the representations.

Upon observation, it is evident that embeddings derived from the
LINKX method, as shown in Fig. 4 (a), are more concentrated at the
lower portion of the contour, indicating a less uniform distribution.
In contrast, embeddings obtained using our method, as illustrated
in Fig. 4 (b), display a more uniform distribution across the unit
circle, suggesting a more evenly spread representation.

(D

(b) embedding with noise

(a) embedding in baseline

Figure 4: Visualization of the embedding.

5 CONCLUSION

This paper studies the problem of learning robust representations
from heterophilous graphs, which are characterized by the presence
of diverse and non-homophilous connections. This paper introduces
anovel method, RHGL-UA, designed to learn robust representations
for heterophilous graphs. Our approach enhances model robust-
ness through the introduction of controlled random perturbations,
achieving a more uniform distribution of representations. Extensive
experiments validate the efficacy of RHGL-UA, demonstrating its
capability to adapt to diverse graph structures and improve perfor-
mance on downstream tasks. However, our method’s computational
complexity might limit its applicability to extremely large-scale
graphs, which is a potential area for future improvement.
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