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Abstract

Filmmaking and animation production often require sophis-
ticated techniques for coordinating camera transitions and
object movements, typically involving labor-intensive real-
world capturing. Despite advancements in generative AI for
video creation, achieving precise control over motion for in-
teractive video asset generation remains challenging. To this
end, we propose Image Conductor, a method for precise con-
trol of camera transitions and object movements to generate
video assets from a single image. A well-cultivated training
strategy is proposed to separate distinct camera and object
motion by camera LoRA weights and object LoRA weights.
To further eliminate motion ambiguity from ill-posed trajec-
tories, we introduce a camera-free guidance technique dur-
ing inference process, enhancing object movements while
eliminating camera transitions. Additionally, we develop a
trajectory-oriented video motion data curation pipeline for
training. Quantitative and qualitative experiments demon-
strate our method’s precision and fine-grained control in gen-
erating motion-controllable videos from images, advancing
the practical application of interactive video synthesis.

Project Page —
https://liyaowei-stu.github.io/project/ImageConductor/

Introduction
Filmmaking and animation production are essential forms
of visual art. During the creative process of video media,
professional directors often require advanced cinematogra-
phy techniques to meticulously plan and coordinate camera
transitions and object movements, ensuring storyline coher-
ence and refined visual effects. To achieve precise creative
expression, the current workflow for video media orchestra-
tion and production heavily relies on real-world capturing
and 3D scan modeling, which are labor-intensive and costly.

Recent work (Ho et al. 2022; Blattmann et al. 2023b;
Girdhar et al. 2023; Xing et al. 2023; Chen et al. 2023;
Blattmann et al. 2023a; Bar-Tal et al. 2024; Brooks et al.
2024) explores an AIGC-based filmmaking pipeline that

*‡Project lead. *Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

leverages the powerful generative capabilities of diffusion
models to generate video clip assets. Despite these advance-
ments, generating dynamic video assets allowing creators
precisely express their ideas remains unusable, for: (1) Lack-
ing of efficient generating control interface. (2) Lacking of
fine-grained and accurate control over camera transitions
and object movements.

Although several works have attempted to introduce mo-
tion control signals to guide the video generation pro-
cess (Yin et al. 2023; Wang et al. 2023, 2024; Wu et al.
2024), none of the existing methods support accurate and
fine-grained control over both camera transitions and object
movements (see Fig. 1 and Fig. 4).

In fact, data available on the internet often mixes both
camera transitions and object movements, leading to am-
biguities between the two types of motion. Although Mo-
tionCtrl (Wang et al. 2023) uses a data-driven approach
to decouple camera transitions from object motion, it still
lacks precision and effectiveness. Camera parameters are
neither intuitive nor straightforward to obtain for cinemato-
graphic variations. For object movements, MotionCtrl uses
ParticleSfM (Zhao et al. 2022), a motion segmentation net-
work based on optical flow estimation, which introduces
significant errors. Additionally, ground truth videos anno-
tated based on motion segmentation networks still contain
camera transitions, causing generated videos to exhibit un-
intended cinematographic variations. Decoupling cinemato-
graphic variations from object movements through data cu-
ration is inherently challenging. Obtaining video data from a
fixed camera viewpoint, i.e., videos with only object move-
ments, is difficult. Optical flow-based motion segmentation
methods (Teed and Deng 2020; Xu et al. 2022; Zhao et al.
2022; Yin et al. 2023; Wang et al. 2023) struggle to accu-
rately track moving objects without errors and fail to elim-
inate intrinsic camera transitions in realistic videos. Over-
all, existing methods are either not fine-grained or not suffi-
ciently accurate and effective.

In this paper, we propose Image Conductor, an interactive
method for fine-grained object motion and camera control to
generate accurate video assets from a single image. Effective
fine-grained motion control requires robust motion represen-
tation. Trajectories, being intuitive and user-friendly, allow
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(a) Camera Transitions🪄

(b) Object Movements🪄

A girl with wavy hair.

A corgi dog.

A jellyfish.

A burning rose.

Figure 1: Orchestrated Results of Image Conductor. Image Conductor enables fine-grained and accurate image-to-video
motion control, including both camera transitions and object movements. Colorful lines denote motion trajectories.

users to control motion in video content by drawing paths.
However, a large-scale, high-quality open-source trajectory-
based tracking video dataset is currently lacking. To address
this, we use CoTracker (Karaev et al. 2023) to annotate exist-
ing video data and design a data filtering workflow, resulting
in high-quality trajectory-oriented video motion data.

To address the coupling of cinematographic variations
and object movements in real-world data, we first train a
video ControlNet (Zhang, Rao, and Agrawala 2023) using
annotated data to convey motion information to the UNet
backbone of the diffusion model. We then propose a col-
laborative optimization method that applies distinct sets of
Low-Rank Adaptation (LoRA) weights (Hu et al. 2021) on
the ControlNet to distinguish various types of motion. In
addition to the denoising loss commonly used in diffusion
models, we introduce an orthogonal loss to ensure the in-
dependence of different LoRA weights, enabling accurate
motion disentanglement.

To flexibly eliminate cinematographic variations caused
by ill-posed trajectories, which are difficult to distinguish in
LoRA, and to enhance object movement, we also introduce
a new camera-free guidance. This technique iteratively exe-
cutes an extrapolation fusion between different latents dur-
ing the sampling process of diffusion models, similar to the
classifier-free guidance technique (Ho and Salimans 2022).

In brief, our main contributions are as follows:

✰ We construct a high-quality video motion dataset with
precise trajectory annotations, addressing the lack of
such data in the open-source community.

✰ We introduce a method to collaboratively optimize LoRA
weights in motion ControlNet, effectively separating and
controlling camera transitions and object movements

✰ We propose camera-free guidance to heuristically elim-
inate camera transitions caused by multiple trajectories
that are challenging to separate with LoRA weights.

✰ Extensive experiments demonstrate the superiority of our
method in precisely motion control, enabling the genera-
tion of videos from images that align with user desires.

Approach
Overview
Image Conductor aims to animate a static image by precisely
directing camera transitions and object movements accord-
ing to user specifications, producing coherent video assets.
Our workflow includes trajectory-oriented video data con-
struction, a motion-aware image-to-video architecture, con-
trollable motion separation, and camera-free guidance.

We use user-friendly trajectories to define the intensity
and direction of camera transitions and object movements.
To address the lack of large-scale annotated video data, we
design a data curation pipeline to create a consistent video
dataset with appropriate motion.

Using this data, we train video ControlNet (Zhang, Rao,
and Agrawala 2023) to synthesize motion-controllable video
content. To eliminate ambiguities between camera transi-
tions and object movements, we employ separate sets of
LoRA weights. First, we train with camera-only LoRA
weights to control camera transitions. Then, we load these
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Figure 2: a) Framework of Image Conductor. 3D UNet serves as the diffusion backbone, while image ControlNet and motion-
controllable ControlNet (and its LoRA weights) convey appearance and motion information, respectively. We progressively
fine-tune different modules during trarning phase (see Sec 3.4). b) Trajectory-oriented video motion data curation workflow.
We carefully curate data to ensure dynamic and consistent video content, as well as precise trajectory annotations.

weights and use a new set of object LoRA weights to decou-
ple object movement, ensuring precise control. We also in-
troduce a loss function with orthogonal constraints to main-
tain independence between different LoRA weights.

To seamlessly blend camera transitions and object move-
ments, we propose a camera-free guidance technique that
iteratively extrapolates between camera and object motion
latents during inference. Fig. 2 (a) shows our framework,
Fig. 2 (b) illustrates our data curation pipeline, and Fig. 3
presents the core idea of Image Conductor.

Trajectory-Oriented Video Motion Data Curation
Since Image Conductor relies on trajectories to guide mo-
tion, we need a dataset with trajectory annotations to track
dynamic information in videos. Existing large-scale video
datasets typically lack such annotations. While some meth-
ods use motion estimators to annotate video data, these ap-
proaches often suffer from inaccuracies(Yin et al. 2023;
Wang et al. 2023; Wu et al. 2024) or lack generality(Wu
et al. 2024). Moreover, almost all annotated datasets with
trajectory annotations are not publicly available. To address
this, we introduce a comprehensive and general pipeline for
generating high-quality video data with appropriate motion
and consistent scenes, as illustrated in Fig. 2 (b).

Video Collection. We leverage two datasets in our re-
search: the WebVid dataset (Bain et al. 2021), which is a
large-scale mixed dataset with textual descriptions, and the
Realestate10K dataset (Zhou et al. 2018), which is a camera-
only dataset. The Image Conductor aims to decouple ob-
ject movements from mixed data, requiring scene consis-
tency and high motion quality. To ensure temporal quality,
we process the WebVid dataset by detecting cuts and filter-
ing motion. For the Realestate10K dataset, we focus on the

diversity of camera transitions and generate video captions
using BLIP2(Li et al. 2023) by extracting frames at specific
intervals and concatenating their descriptions.

Cuts Detection and Selection. In videos, cuts refer
to transitions between different shots, and generative
video models are sensitive to such motion inconsisten-
cies (Blattmann et al. 2023a). To avoid cuts and abrupt scene
changes, which can cause the model to overfit these phe-
nomena, we first use a cut detection tool 1 to identify cuts
within the video dataset. We then select the longest consis-
tent scenes as our video clips, ensuring scene consistency.

Motion Estimation and Filtering. To ensure the dataset
exhibits good dynamics, we use RAFT (Teed and Deng
2020) to compute the optical flow between adjacent frames
and calculate the Frobenius norm as a motion score. We fil-
ter out the lowest 25% of video samples based on this score.
To reduce computational cost, we resize the shorter side of
the videos to 256 pixels and randomly sample a 32-frame
sequence with a random temporal interval of 1 to 16 frames.
These 32 frames are used as the training dataset, and their
motion scores are computed for sample filtering.

Cropping and Tracking. To standardize the dimensions
of the training data, we perform center cropping on the
previously obtained data, resulting in video frames of size
384 × 256 × 32. We then employ CoTracker (Karaev et al.
2023), a tracking method towards dense point, to record mo-
tion within the video using a 16 × 16 grid. Compared to
optical flow-based point correspondence methods (Teed and
Deng 2020; Xu et al. 2022), tracking avoids drift-induced
error accumulation, providing a more accurate representa-

1https://github.com/Breakthrough/PySceneDetect.
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Figure 3: Fine-grained Motion Separation Method. a) The training process is divided into two stages. Initially, camera-only
data is used to empower the camera LoRA with the ability to control camera transitions. After loading the well-trained camera
LoRA, mixed motion data is used to train the object LoRA, refining object motion information. b) During inference, loading
different LoRAs provides the model with various control capabilities.

tion of motion. After tracking, we accumulate point trajec-
tories by calculating the differences between adjacent points
within the same trajectory. This results in stacked flow maps
compatible with the input format of ControlNet (Zhang,
Rao, and Agrawala 2023).

Sampling and Gaussian Filter. To enhance user interac-
tion and usability, we use sparse trajectories for motion guid-
ance. We heuristically sample n ∈ [1, 8] trajectories from
the dense set, with 8 being the upper limit. The value of n is
randomly selected, and the normalized motion intensity of
each trajectory is used as the sampling probability. The ac-
cumulated flow map from these trajectories forms a sparse
matrix. To avoid training instability caused by the sparse ma-
trix, we apply a Gaussian filter to the trajectories, similar to
previous methods (Yin et al. 2023; Wang et al. 2023; Wu
et al. 2024). Through this data processing pipeline, we con-
structed a trajectory-oriented video motion dataset contain-
ing 130k mixed videos with camera transitions and object
movements, and 62k videos with only camera transitions.

Motion-aware Image-to-video Architecture
Image-to-Video Backbone. As illustrated in Fig. 2 (a), we
utilize Animatediff (Guo et al. 2023b) equipped with Spar-
seCtrl (Guo et al. 2023a) as our pre-trained image-to-video
foundational model. This model uses the CLIP (Radford
et al. 2021) text encoder to extract text embeddings ctxt ∈
R1×d, which are then passed to the UNet (Ronneberger, Fis-
cher, and Brox 2015) backbone via cross-attention mecha-
nism. The input image, serving as the first frame, is concate-
nated with an all-zero frame matrix and a mask identifier
channel-wise to form cimg ∈ RT×4×H×W . Next, the video
SparseCtrl, a variant of the ControlNet (Zhang and Agrawala
2023) that removes the skip-connections between the Con-
trolNet’s and the UNet encoder’s input latents, is used to
extracts image information from cimg . In addition, in the ap-
pendix, we also demonstrate our method with another video
backbone, namely DynamiCrafter (Xing et al. 2023).

Motion-Controllable ControlNet. To extract motion in-
formation from the annotated trajectory input ctrajs ∈
RT×2×H×W for composition of camera transitions and ob-
ject movements in videos, we use ControlNet as the motion
encoder to capture multi-level motion representations. This
ControlNet incorporates different types of LoRA weights to
guide the image-to-video generation with user-desired cam-
era transitions and object movements. Consistent with the
observations of SparseCtrl (Guo et al. 2023a), we find that
removing the skip connections between the main branch’s
and the conditional branch’s input latents speeds up conver-
gence during training.

Controllable Motion Separation
The aim of our approach is to precisely separate camera
transitions and object movements in videos, enabling fine-
grained control over the generation of video clip asserts that
meets user expectations. To this end, we introduced camera
LoRA ∆θcam and object LoRA ∆θobj into the motion Con-
trolNet to guide the synthesis of different types of motion.
As shown in the Fig. 3, during the training process, we em-
ployed a collaborative optimization strategy. First, we opti-
mized the camera LoRA, and then, we optimized the object
LoRA based on the loaded camera LoRA. During the infer-
ence stage, the model loads different LoRA to control cam-
era transitions (e.g., zooming out) and object movements
(e.g., two waves advancing in a specified direction).

Camera Transitions. Since it is available to obtain data
with camera-only transition, we straightforwardly train cam-
era LoRA θcam = θ0 +∆θcam using our our carefully culti-
vated camera motion dataset, endowing the ControlNet with
the ability to direct cinematographic variations. The stan-
dard diffusion denoising training objective is utilized:

Lcam = Ez0,cam,c,ϵ∼N (0,I ),t

[
∥ϵ− ϵθcam(zt,cam , t, c)∥

2
2

]
, (1)

where θcam is the denoiser with ControlNet’s camera LoRA
loaded, zt,cam is the noisy latent of videos with only camera
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Figure 4: Qualitative Comparisons of the proposed Image Conductor. (a) Camera Transitions. Our method can simultane-
ously utilize text, image, and trajectory prompts as control signals to achieve more natural content and camera transitions. (b)
Object Movements. Apart from our method, other approaches incorrectly confuse object movements with camera transitions.

transition at timestep t, while c = [ctxt, cimg, ctrajs] refer to
the text prompt, image prompt, and conditional trajectory.

Object Movements. Due to the scarcity of fixed-camera-
view video data without cinematographic variations, we
need to decouple object motion from mixed data where both
camera transitions and object movements are exsist. Observ-
ing that distinct types of motion share the same trajectory,
we can further train the object LoRA θobj = θ0 + ∆θobj af-
ter loading the well-trained camera LoRA weights, i.e., tar-
geting the reconstruction of camera transitions and object
movements in the original video content from mixed data.
Formally, we load both the camera LoRA and object LoRA
simultaneously during training phase, and prevent gradient
flow to the camera LoRA via stopgrad sg[·]:

θmix = θ0 + sg[∆θcam] + ∆θobj. (2)

Similarly, we optimize the object LoRA using the stan-

dard diffusion denoising objective:

Lobj = Ez0,mix,c,ϵ∼N (0,I ),t

[
∥ϵ− ϵθmix(zt,mix , t, c)∥

2
2

]
, (3)

where θmix is the denoiser with all of ControlNet’s LoRA
loaded, zt,cam denotes the noisy latent of videos with camera
transition and object movements at timestep t.

Orthogonal Loss. To encourage the object LoRA to learn
concepts distinct from the camera LoRA and to accelerate
the convergence of the model, we propose an orthogonal loss
as a joint optimization objective. Specifically, we extract all
linear layer weights Wcam and Wtraj from the different Lo-
RAs and impose an orthogonality constraint on them:

Lortho = EWi,cam∈Wcam,Wi,traj∈Wtraj

[
∥I −Wi,camW

T
i,traj∥22

]
(4)

where I represents the identity matrix, Wi,cam and Wi,traj re-
fer to the weights of the i-th linear layer of the camera LoRA
and object LoRA, respectively.
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Figure 5: Effect of distinct LoRA weights. Image conductor enables users to independently control distinct motion.

Method Automatic Metrics Human Evaluation
FID ↓ FVD ↓ CamMC ↓ ObjMC ↓ Overall ↑ Quality ↑ Motion ↑

DN (Yin et al. 2023) 237.26 1283.85 48.72 51.24 31.8% 37.1% 27.7%
DA (Wu et al. 2024) 243.17 1287.15 66.54 60.97 6.5% 8.1% 6.3%

Image Conductor 209.74 1116.17 33.49 42.38 61.7% 54.8% 66.0%

Table 1: Quantitative Comparisons with SOTA Methods. We utilize automatic metrics (i.e., FID, FVD, CamMC, ObjMC)
and human evaluation (i.e., overall performance, sample quality, motion similarity) to evaluate the performance. DN and DA
denotes DragNUWA (Wu et al. 2024) and DragAnything (Yin et al. 2023), respectively.

In all, the optimization process is incremental. We first
optimize the camera LoRA using Lcam, and then optimize
the object LoRA using Lmix and Lortho.

Camera-free Guidance
Multiple object control often leads to motion ambiguity. In-
spired by classifier-free guidance (Ho and Salimans 2022),
we propose a camera-free guidance technique to flexibly and
seamlessly enhance motion intensity while eliminating cam-
era transitions:

ϵ̂θ0,θtrajs(xt, c) =ϵθ0(xt,∅)

+ λcfg(ϵθ0(xt, c)− ϵθ0(xt,∅))

+ λtrajs(ϵθtrajs(xt, c)− ϵθ0(xt, c)),

(5)

where θtrajs refers to the model with object LoRA and θ0 is
the model without any LoRA. The final output latent is de-
rived by extrapolating the outputs of these two components.

Experiments
Comparisons with State-of-the-Art Methods
We compare Image Conductor with SOTA image-based or
text-based motion controllable video generation methods,
namely DragNUWA (Yin et al. 2023), DragAnything (Wu
et al. 2024) and MotionCtrl (Wang et al. 2023).

Evaluation datasets. To independently evaluate camera
transitions and object movements, we use two distinct
datasets: 1) Camera-only Motion Evaluation Dataset: we se-
lect 10 camera trajectories, e.g. pan left, pan right, pan up,
pan down, zoom in, zoom out, to evaluate control over cin-
ematographic variations. 2) Object-only Motion Evaluation
Dataset: we design 10 varied trajectories, including straight
lines, curves, shaking lines, and their combinations.

Evaluation metrics. To thoroughly evaluate the effective-
ness of our method, we following MotionCtrl (Wang et al.
2023) to assessed two types of metrics: 1) Video con-
tent quality evaluation. We employ Fréchet Inception Dis-
tance (FID)(Heusel et al. 2017), Fréchet Video Distance
(FVD)(Unterthiner et al. 2018) to measure the visual qual-
ity and temporal coherenceand. The reference videos of FID
and FVD are 5000 videos randomly selected from Web-
Vid (Bain et al. 2021). 2) Video motion quality evaluation.
The Euclidean distance between the predicted and ground
truth trajectories, i.e., CamMC and ObjMC, is used to eval-
uate the motion control.

Implementation details. We use Animatediff v3 (Guo
et al. 2023b) as our base model for image-to-video genera-
tion. We train only the motion ControlNet while keeping the
UNet backbone weights frozen. Details are in the appendix.
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Figure 6: Effect of Camera-free Guidance. The camera-free guidance flexibly enhances object movements during inference.

Qualitative Evaluation. Fig. 4 displays some of our qual-
itative results. Compared to previous methods (Yin et al.
2023; Wu et al. 2024; Wang et al. 2023), our approach
can effectively control camera transitions and object move-
ments. In terms of camera transitions, both DragNUWA and
DragAnything fail to achieve the camera transition of pan-
ning down and then up in the generated video. Although
Motionctrl-SVD is capable of generating the specified cam-
era movement, it is unable to define natural content changes
via text prompts. Additionally, it cannot accurately define
the intensity of camera changes, and sometimes introduces
distortion artifact.

In terms of object movements, both DragNUWA and Dra-
gAnything incorrectly interpret object movement as camera
transition, resulting in generated videos that do not meet user
intentions. In addition, the motion trajectories of their gen-
erated videos are often poorly matched to the desired trajec-
tories precisely due to the errors introduced by the labeled
dataset. As trajectory-based MotionCtrl relies on the text-to-
video model, we directly use text and trajectory prompts to
control the generation of the video under different seed. The
results demonstrate that it lacks fine-grained control over the
generated content due to its inability to use images as con-
ditions. Additionally, it still exhibits a significant amount of
camera transition rather than object movement. In all, our
method is capable of accurately and finely controlling vari-
ous types of motion utilizing the separated LoRA.

Quantitative Evaluation. As shown in the Tab. 1, com-
pared to other methods, our proposed Image Conductor
achieves state-of-the-art quantitative performance. We mea-
sure our alignment with the given trajectoies via the CamMC
and ObjMC metrics, surpassing the baseline models and
demonstrating our precise motion control capabilities. At the
same time, the FID and FVD metrics illustrate that our gen-
eration quality surpasses other models, capable of producing
realistic videos. Furthermore, we invite 31 participants to as-
sess the results of DragNUWA, DragAnything and Image
Conductor. The assessment includes video quality, motion
similarity. Participants are also asked to give an overall pref-
erence for each compared pair. The statistical results confirm
that our generated videos not only appear more realistic and

visually appealing but also exhibit superior motion adher-
ence compared to those produced by other models.

Ablation Studies
Effect of Distinct LoRA Weights. To validate our interac-
tive optimization strategy, which uses distinct LoRA weights
to separate camera transitions from object movements, we
guide different LoRA models with the same trajectory to
generate videos. As shown in Fig. 5, loading various LoRA
weights endows the model with different capabilities. For
instance, a vertically upward trajectory causes the video to
pan up when using the camera LoRA, and it generates up-
ward waves when the object LoRA is applied.

Effect of Camra-free Guidance. As shown in Fig. 6, us-
ing camera-free guidance can facilitate the separation of ob-
ject movements from camera transitions in several challeng-
ing examples. When camera-free guidance λtrajs is set to
1, i.e., camera-free guidance is not yet used, the generated
video exhibits a unexpected pan left transformation. When
the λtrajs is set to 1.1, the generated videos exhibit reasonable
object movements, yet some artifacts still remain. As the
guidance increases, the movements of the object becomes
more apparent and clear.

Conclusion
In conclusion, this paper introduces Image Conductor, a
novel approach for precise and fine-grained control of cam-
era transitions and object movements in interactive video
synthesis. We design a training strategy and utilized dis-
tinct LoRA weights to decouple camera transition and object
movements. Additionally, we propose a camera-free guid-
ance technique to enhance object movement control. Ex-
tensive experiments demonstrate the effectiveness of our
method, marking a significant step towards practical appli-
cations in video-centric creative expression.
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