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Abstract

Recent advancements in non-autoregressive single-task
speech synthesis have garnered significant attention. How-
ever,traditional single-task speech synthesis methods focus
primarily on mapping semantic tokens to acoustic tokens,
which overlooking the internal relationships within acoustic
features. Addressing this gap, we propose SpeechSEC, a
unified multi-task framework designed for Speech Synthesis,
Editing, and Continuation tasks by dynamically adjusting
input conditions. SpeechSEC not only surpasses previous
state-of-the-art method in audio quality (4.20 vs 4.00), and
voice preservation (0.72 vs 0.58) for synthesis task by acquiring
shared knowledge, but also efficiently executes editing and con-
tinuation tasks with good performance via non-autoregressive
techniques. Additionally, SpeechSEC exhibits a strong adapt-
ability to current speech discretization methods, like Hubert,
Descript-Audio-Codec and SpeechTokenizer, which showcases
robustness of our approach. Audio samples are available.'
Index Terms: multi-task learning, speech synthesis, speech
editing, speech continuation

1. Introduction

The demand for audio generation spans various applications,
from generating speech with a specific voice from text (or se-
mantic tokens) using speech synthesis models [1, 2, 3, 4, 5, 6,
7, 8, 9], to detailed editing of speech segments (e.g., modifying
‘Jack is a good student’ to ‘Jack is an excellent and smart stu-
dent’) [10, 11, 12, 13, 14, 15, 16], and generating continuations
of speech [17, 18, 19, 20, 21].

Notable frameworks and methods like AudioLM [17],
SoundStream [22], and SoundStorm [23] have paved the way
for speech synthesis, editing, and continuation. They intro-
duced the transition of speech from continuous to discrete do-
mains by tokenizing speech into semantic and acoustic tokens,
enabling the use of Transformer-based models [24, 25, 26] for
audio generation. AudioLM achieved high-quality audio gen-
eration by treating the task as language modeling but uses an
autoregressive approach. SoundStorm improved on this by em-
ploying non-autoregressive methods, using bidirectional atten-
tion and parallel decoding to increase generation speed. Pheme
[27] further optimized conversational speech generation by us-
ing SpeechTokenizer [28] with smaller-scale data, improving
efficiency and real-time performance.

Inspired by these breakthroughs, we propose SpeechSEC,
which aims to offer a versatile solution capable of handling
various audio processing tasks within a single, cohesive ar-
chitecture. The driving motivation behind SpeechSEC is to
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harness the rapid, high-quality generation capabilities of non-
autoregressive models like SoundStorm, coupled with leverag-
ing the sophisticated masking techniques and multi-task joint
training schemes found in MAGVIT [29] to create a multi-task
framework that excels in speech synthesis, editing, and contin-
uation.

Our approach, through multi-task training, aims for the
model to acquire diverse knowledge across different tasks. For
instance, in speech synthesis task, it learns to predict acous-
tic tokens from semantic tokens. In speech continuation tasks,
it grasps the relationships internally between acoustic tokens,
predicting subsequent acoustic information based solely on pre-
vious acoustic tokens. In speech editing tasks, it enhances ca-
pacity for seamless transitions and natural integration between
speech segments. SpeechSEC, our multi-task training frame-
work, not only surpasses single-task training in speech syn-
thesis but also outperforms the state-of-the-art method (Sound-
Storm [23]) in both audio quality and voice preservation, as
demonstrated in our results. SpeechSEC also efficiently han-
dles the other two tasks (editing and continuation) with high
speed and quality, leveraging its non-autoregressive nature.
Moreover, we prove our method’s adaptability across vari-
ous methods for extracting semantic and acoustic tokens from
raw wavform including SpeechTokenizer[28], Descript-Audio-
Codec[30] and Hubert[31, 32]. Lastly, through ablation studies,
we demonstrate the effectiveness of multi-task training in en-
hancing speech synthesis performance.

In a nutshell, our contributions are as below:

¢ We significantly improve speech synthesis performance
through multi-task joint training, enhancing intelligibility,
voice preservation and audio quality, while ensuring fast exe-
cution with non-autoregressive methods. Our framework out-
performs the state-of-the-art method in both voice preserva-
tion and audio quality.

* We propose a unified multi-task framework that handles
speech synthesis, editing, and continuation in a single model,
achieving high efficiency and versatility in audio processing
tasks.

* We demonstrate the adaptability and robustness of our ap-
proach by showing its effectiveness across different semantic
and acoustic token extraction methods, highlighting its broad
applicability and potential for real-world use.

2. Proposed Methods

In this section, we detail the architecture and functionality of
SpeechSEC, illustrated in Figure 1.
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Figure 1: lllustration of the proposed SpeechSEC training Framework. We sample one of the tasks at each training step and build its

condition inputs x; by padding the raw audio and processing differently, where red,blue and

padding.

2.1. Problem Definition and Framework Formulation

In SpeechSEC’s training process, we adopt a multi-task learning
framework that handles three tasks: speech synthesis, speech
editing, and speech continuation. Each instance in the dataset is
represented as D = {(z:, yi, 2, ¢ ) } 71, Where:

e x;: the input sequence, which includes both semantic and
acoustic tokens extracted from the raw audio,

* y;: the target sequence representing the quantized audio to-
kens,

* z;: the Task Register that indicates the specific task (e.g.,
speech synthesis, continuation, or editing),

* Se: the speaker embedding, capturing the characteristics of
the speaker for each speech segment.

The primary objective of SpeechSEC is to predict the target
quantized audio tokens y; conditioned on the input sequence
x;, task information z;, and speaker embedding s.. This can be
formulated as:

(€))

where 6 represents the model parameters that are optimized dur-
ing training. During inference, the semantic and acoustic tokens
of z; are obtained differently depending on the task. For synthe-
sis and editing tasks, semantic tokens can be derived from text
using T5 pre-trained model [25, 27]. For continuation and edit-
ing tasks, acoustic tokens are extracted from the original audio,
providing the necessary context. This flexible input processing
enables SpeechSEC to efficiently adapt to various tasks.

P(ys|zi, zi, 5¢; 6),

2.2. Model Architecture
2.2.1. Semantic and Acoustic Tokens Extractor

During training, we utilize extractors to obtain semantic and
acoustic tokens from the audio. Three different methods used
in this study are described as below:
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denotes valid tokens and white is

¢ SpeechTokenizer is formulated as:

ST(wav) = {qi,... gef{l,....c}", @

with C = 1,024 representing the codebook size. The first
layer g1 represents the semantic tokens, while subsequent
layers g2, . . . , gs represent the acoustic tokens.

1G8}s

¢ Hubert is formulated as:

Hubert(wav) = {s1, ... st €41,...,C}, (3

where C' = 500 denotes the codebook size and s; is the se-
mantic token at timestep ¢ . Hubert is only used to extract
semantic tokens from wavform.

¢ DAC is formulated as:

7ST}7

DAC(wav) = {di,...,d12}, di€{l,...,C}", 4

with C' = 1,024 representing the codebook size. All 12
layers represent the acoustic tokens. DAC is only used to
extract acoustic tokens from wavform.

Each token extractor operates over the duration D of the audio
sampled at rate rs, and the resulting sequence length is defined

asT = DT‘;S , where r4 is the downsample rate.

2.2.2. Input Condition Embedding Processing

To handle the three tasks of speech synthesis, speech editing,
and speech continuation, we process the input conditions dif-
ferently, obtaining the model input x; specific to each task.

¢ Speech synthesis: We embed acoustic and semantic tokens,
then randomly select one RVQ level for masking. A cosine
masking strategy is applied by choosing a random start point
start € (0,Ts), where Ts is the shortest acoustic token
length in the batch. Masking follows a cosine schedule ~(-),
with a probability defined as p = cos(u), where u is uni-
formly sampled from [0, 7r/2]. The embeddings are summed



with the lower-level embeddings and semantic tokens to gen-
erate o, the speech synthesis task input.

* Speech continuation: Acoustic tokens are embedded, and
the same masking strategy is applied. However, during in-
ference, since the continuation of the speech is entirely un-
known, we mask the unknown future tokens ¢ € (start, Ts).
The masked tokens are then summed with the lower-level em-
beddings to generate x1, the continuation task input.

» Speech editing: We modify specific audio segments by em-
bedding acoustic tokens and applying a similar masking strat-
egy as in synthesis. Instead of masking up to Ts, we introduce
an endpoint end after start, ensuring masking occurs between
start and end. By setting start and end, the model can flex-
ibly handle variable-length speech editing. The model learns
to unmask these tokens using semantic tokens, generating x2,
the input for the editing task.

2.2.3. Task Register and Speaker Embedding

To enhance the model’s ability to discern inputs for different
tasks during joint multi-task learning and more accurately cap-
ture the characteristics of the speaker, we implemented a Task
Register and integrated speaker embedding. At each training
step, we randomly select one task from the available tasks. The
index of this task was embedded as z;. Then we extract speaker
embeddings s. for each speech segment based on the methods
described in [33, 34]. The final input to the model z is:

(&)

This approach allows the model to learn a generalized represen-
tation across tasks while capturing unique speaker characteris-
tics.

!
T; =X + 2 + Se

2.2.4. Conformer and Decoding Procedure

Our model employs a standard Conformer network with bidi-
rectional self-attention [35] and rotary positional embeddings
[36].

The decoding procedure follows SoundStorm’s iterative
process through RVQ layers, advancing to the next layer ¢ 4 1
only after selecting tokens from all previous layers 1, ..., q. At
each stage, we use a confidence-based sampling approach [23],
which reduces forward pass operations compared to autoregres-
sive models like MQTTS [37].

2.3. Training Objective

For each training instance, given the task-specific mask M4
identifying RVQ layer-selected tokens for prediction, the train-
ing objective for our model becomes:

‘C(m;" Yis Mrvq) =

>

JEMiyg

[ Zzﬁ log (45 ] ©)

where £ denotes the cross-entropy loss, y(c) represents the tar-

get probability of class ¢ in the sequence y; at the 5" token
position selected by the mask My, and g)f? =M (a:i)§°>
is the predicted probability for the same class and token po-
sition by the model M. This formulation ensures the model’s
focus is exclusively on improving predictions for the masked
(i.e., to be predicted) token positions, thereby optimizing the
model’s learning towards accurate generation and helping the
model learn how to unmask the masked tokens.

3466

3. Experiments and Results
3.1. Datasets, Metrics and Implementation Details

Datasets We train SpeechSEC on a dataset designed for text-to-
speech (TTS) use: LibriTTS-R dataset [38]. LibriTTS-R is an
open, high-quality dataset commonly used for text-to-speech,
which consists of 585 hours of speech data at 24 kHz sampling
rate from 2,456 speakers and the corresponding texts. During
training, we utilize the train_clean_100, train_clean_360, and
train_clean_500 subset of it and utilize the test_clean subset dur-
ing testing.

Metrics Following [23],we assess synthesized speech in terms
of speech intelligibility,voice preservation,audio quality, and
synthesis time. For intelligibility, we use the Conformer XL
model [35] , evaluating via ASR results by comparing syn-
thesized speech to the original text to obtain WER and CER
metrics, where lower scores indicate higher intelligibility. For
audio quality, we adopt a MOS evaluation method following
the approach used in [23], with higher scores indicating bet-
ter quality. Voice preservation is assessed through audio cosine
similarity between our model’s output and the prompt speaker’s
voice[39, 40], with scores between -1 to 1. Scores closer to 1
on the cosine similarity indicate better preservation of speaker
identity. Finally, the average time to generate acoustic tokens
from semantic tokens represents synthesis time, conducted on
an RTX 3090 GPU.

Implementation Details During training, we preprocess the
data by filtering out audio files shorter than one second and
resampling to 16kHz. Audio files are sorted by length and
batched accordingly (batch size: 64, hidden size: 512). In test-
ing, we extract semantic and acoustic tokens from all audio files
in test_clean.

For speech synthesis, audio is generated from semantic to-
kens. In the speech editing task, portions of the acoustic tokens
are randomly masked, and the corresponding semantic tokens
are provided to generate the modified audio, simulating real-
world speech editing scenarios. Our framework supports flexi-
ble, variable-length editing, allowing for the addition, removal,
or replacement of parts of the audio through adaptive length ad-
justments, leveraging a pre-trained text-to-semantic model (T5),
as demonstrated in the demo. In the speech continuation task,
the model is given the first portion of acoustic tokens, and it
predicts the subsequent tokens based on the provided context.
Since the continuation is generated from prior audio context,
WER and CER metrics are not applicable due to the variability
in the generated content.

3.2. Main Experiment and Results

To validate the effectiveness of our proposed multi-task learn-
ing framework across various semantic and acoustic extrac-
tors, experiments are conducted in three groups: S7, utilizing
SpeechTokenizer for both semantic and acoustic token extrac-
tion; STDAC, utilizing SpeechTokenizer for semantic and DAC
for acoustic tokens; and HuDAC, utilizing HuBERT for seman-
tic and DAC for acoustic tokens.

As a baseline, we train each group on the speech synthe-
sis task independently. The results, as illustrated in Table 1,
demonstrate that SpeechSEC significantly improves speech
synthesis performance across all setups. Improvements are ob-
served in speech intelligibility, audio quality, and voice preser-
vation, while maintaining efficient inference time.

Our results not only remain highly competitive with prior
works, such as SoundStorm[23] , but also significantly sur-



Table 1: Experiments Results for Speech Synthesis Task

WER| CER| Audio Quality? Voice Preservation? Acoustic Inference Time|
ST (BaseLine) 9.2 3.8 3.98 0.68 0.19
ST (SpeechSEC) 8.7 3.6 4.20 0.72 0.23
STDAC (BaseLine) 17.9 10.3 3.63 0.57 0.89
STDAC (SpeechSEC) 14.3 6.6 3.65 0.61 1.21
HuDAC (BaseLine) 14.1 9.4 3.72 0.59 0.86
HuDAC (SpeechSEC) 113 5.7 3.83 0.58 1.36

Table 2: Experiments Results for Speech Editing and Speech Continuation Tasks

Task Type Model WER| CER| Audio Quality? Voice Preservation? Acoustic Inference Time|
Speech Editing ST 5.1 1.8 3.93 0.82 0.35

STDAC 8.3 4.6 3.70 0.64 1.30

HuDAC 6.6 32 3.83 0.58 1.41
Speech Continuation ST / / 3.63 0.66 0.43

STDAC / / 3.50 0.59 0.87

HuDAC / / 3.56 0.58 1.03

Table 3: Ablation Study Results with Performance Delta Com-
pared with SpeechSEC

Audio Voice
WER|  CER| QualityT Preservationt

ST(SpeechSEC) 8.7 3.6 4.20 0.72
ST (W/O Edit) 9.7410 4.0404 3.86.0.16 0.70.0.02
ST (W/O COII) 9.1.,.0_4 3.8*.0‘2 3.84,(]‘13 0.70,()‘02
STDAC(SpeechSEC) 14.3 6.6 3.65 0.61
STDAC (w/o Edit)  18.7444 11.1.45  3.65equal 0.62.40.01
STDAC (W/O COH) 148,05 74108 3.63.0.02 0.58.0.03
HuDAC(SpeechSEC) 11.3 5.7 3.83 0.58
HuDAC(w/o Edit) 153,40 10.8,45.1 3.73.0.1 O.Sgcqu;ﬂ
HuDAC(w/o Con) 128,15  8.447 3.67.0.16 0.52.0.06

pass it in key performance metrics, establishing a new bench-
mark in the field. Specifically, we outperform SoundStorm in
both Audio Quality (4.20 vs 4.00, averaged across short, mid,
and long durations in the ‘with a speaker prompt’ setting) and
Voice Preservation (0.72 vs 0.58, similarly averaged), demon-
strating superior synthesis fidelity and speaker identity preser-
vation. This remarkable achievement is especially noteworthy
considering that our model was trained on a smaller dataset,
highlighting the efficiency and effectiveness of our approach.
These results position SpeechSEC as a state-of-the-art solution
for high-quality, robust speech synthesis, offering a significant
advancement over previous models.

Additionally, the model shows strong performance in
speech editing and continuation tasks, as detailed in Table 2,
demonstrating SpeechSEC’s versatility and robustness across
different speech processing tasks.

3.3. Ablation Study

The ablation study highlights the impact of multi-task learning
on speech synthesis by utilizing shared knowledge from editing
and continuation tasks. Removing either task during training
reduces model performance, as shown in Table 3, underscoring
the importance of multi-task learning.

Performance deltas, marked by subscripts, reflect indi-
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vidual task contributions and the synergistic benefits within
the SpeechSEC framework. Continuation tasks improve the
model’s ability to capture internal acoustic relationships, mainly
enhancing audio quality and voice preservation, while editing
tasks ensure seamless transitions and natural integration be-
tween speech segments, primarily boosting intelligibility. Col-
lectively, these tasks enable SpeechSEC to capture a more com-
prehensive representation of speech, leading to superior synthe-
sis results.

4. Conclusions

In this work, we introduce SpeechSEC, a cutting-edge multi-
task framework designed for speech synthesis, editing, and
continuation. Through extensive experiments, we show that
SpeechSEC surpasses state-of-the-art methods in key areas such
as audio quality and voice preservation for speech synthe-
sis tasks. By leveraging the shared knowledge across tasks,
SpeechSEC not only achieves superior performance in speech
synthesis but also enables high-quality, efficient speech editing
and continuation using non-autoregressive techniques. Our ap-
proach demonstrates strong adaptability across different token
extraction methods, proving its robustness and broad applicabil-
ity. Future work will focus on extending SpeechSEC’s capabil-
ities to handle additional audio tasks, further enhancing its per-
formance and versatility through advanced non-autoregressive
methods and multi-task learning strategies.
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