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Abstract—Chains of Thought (CoT) have shown potential in
augmenting the reasoning capabilities of language models, yet
their effectiveness is predominantly observed in large language
models (LLMs). Recently, several attempts have been made to
inject CoT into small language models (SLMs) using distillation
and achieved promising results. However, current methods (1) ig-
nore the rationality and hierarchical logic of reasoning when con-
structing CoT; (2) fail to inject hierarchical reasoning priors into
SLMs. In this paper, we design a Hierarchical CoT distillation
framework termed HCoTT, whose core component is a hierar-
chical recursive sampling module and a hierarchical learning
module. Specifically, hierarchical recursive sampling utilizes a
hierarchical logic process to generate more diverse explanations
and a Hierarchical Chain of Thought (HCoT). Furthermore,
hierarchical learning encompasses hierarchical supervision and
representation learning, which is designed to augment learning
and representation of implicit explanatory priors in HCoT for
SLMs. Experimental results show that HCoTT can effectively
improve the performance of SLMs on Faculty-Reasoning and
Multiple-Choice QA tasks. More impressively, our method is
model-independent and can consistently improve performance
with existing language model fusions of different scales.

Index Terms—Chain of Thought, Large Language Model,
Question-Answering Task

I. INTRODUCTION

Large Language Models (LLMs) exhibit robust capabilities
across various downstream tasks such as language generation
and question-answer reasoning. Prior studies [1], [2] have
demonstrated that the generation of a Chain of Thought
(CoT) [3] can markedly enhance the reasoning capabilities
of LLMs. Nevertheless, the application of the CoT methodol-
ogy [4], [5] to enhance reasoning in Small Language Models
(SLMs) presents significant challenges. Some works focus on
transferring reasoning abilities from large to small language
models. West et al. [6] trained students for knowledge com-
pletion. Chan et al. [7] used principles to augment teacher
models. Shridhar et al. [8] trained students to decompose ques-
tions. Li et al. [9] proposed joint answer-generation training.
SCOTT [10] applied contrastive learning to enhance explana-
tion consistency and counterfactual reasoning. Although their
work has shown significant progress, we have identified two
key issues: (1) The constructed CoT exhibits linearity and
independence, lacking a hierarchical logical structure. (2) The
employed learning objectives fail to equip SLMs with the
capacity to grasp hierarchical reasoning semantics within CoT.
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The idea of hierarchy learning is widely used in com-
puter vision, such as text categorization [11], functional ge-
nomics [12], and image classification [13]. DHSS [14] applies
hierarchical learning to semantic segmentation. In NLP, hierar-
chical concepts are used in text classification [15], [16] and QA
tasks [17], [18], though these focus on fine-tuning SLMs rather
than integrating CoT for small models. A hierarchical vector-
ization algorithm arranges data samples in a high-dimensional
space, where proximity reflects semantic similarity [19]. Some
methods parameterize the vector space hierarchically using
models [20], [21], but this is computationally intensive. Others
use hierarchy-aware metric learning [22], [23] to shape the
vector space directly.

We propose Hierarchical Chain-of-Thought DisTillation
(HCoTT), a novel distillation method that uses a recursive
approach to generate hierarchical CoT (HCoT) with LLMs and
trains on SLMs with a hierarchical loss. We conducted exten-
sive experiments across multiple datasets focused on factual
reasoning and multi-item question answering to substantiate
the effectiveness and universality of HCoTT. Our contribu-
tions can be summarized as follows: (1) Introduction of a
hierarchical recursive sampling method for constructing HCoT,
facilitating the acquisition of randomly distributed hierarchical
CoT information. (2) Proposal of the hierarchical consistent
learning module, enabling the incorporation of semantic priors
with hierarchical constraints into small models. This facilitates
enhanced learning of implicit logical information from CoT
pathways by SLMs. (3) Introduction of hierarchical thought
contrastive learning, aimed at optimizing the representation
of the chain of thought within the semantic space of small
models. This allows SLMs to effectively represent CoT nodes
across both similar and dissimilar pathways.

II. CONVENTIONAL APPROACH

HCoOTT is generally divided into two parts, namely the
teacher network and the student network, where the teacher
model is an LLM. For all tasks, input structured data can be
formalized as {< g¢,a; >| a; € A.}, where, ¢ represents
a question statement, A, = {ai,..,a.} denotes a set of
candidate answers and a;f € A, is the correct answer among
a series of candidate answers.

Teacher Network. We utilize LLMs as teacher networks to
generate a series of explanations v¢ € v; for each question
and answer pair < ¢, a; >. We further define all prefixes that
generate the specific explanations v} as state paths P(v}) =
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The illustration depicts the HCoTT framework, comprising: (1) HCoT, which encompasses explanations structured with hierarchical logic achieved

via N-step recursive construction; and (2) the effective fine-tuning of hierarchical logic tailored for SLMs facilitated by hierarchical consistent learning and

hierarchical thought contrastive learning.

[v) — vi]. Therefore, each optimal explanatory node v} in
the teacher network will be generated in the following unified
way:

x
3
Uy

= arg max log P (Ui | p,qﬂLP(vi)) ) (D

where p denotes an input prompt.
Student Network. The student network needs to enable the
classifier [11] to fit the correct answers. SLMs will utilize
explanatory sets v, and questions ¢ as inputs to predict
answers y;. Therefore, the category cross-entropy loss is
optimized as:

Lece (y) =

where, CE(-) denotes the cross entropy function.

A. Construction of HCoT

Root of HCoT. For each question and correct answer pair
< ¢,a; >, we provide a constant prompt pg. We will input
< q,a;y,po > as an instruction into LLMs to obtain n
output explanations, and further obtain m explanations V=
[0F,03,+++ ,dL] using hierarchical sampling. The leftmost
legend of Figure 1 shows the hierarchical sampling process.

Recursively Obtain the Next State. We further iterate
through the explanations . € V1, and concatenate <
q,a},po, 0} > as the instruction input for LLMs, and sample
in the same way to obtain the next state ‘722. Through repeated
iterations, we will obtain a complete hierarchical reasoning
explanation Vl, e V™. We further utilize the mask function
to obtain the explanation V1!, , V™ desensitized to the

answer keywords:

CE(at7 yz)a (2)

V; =V;o [[(1 —MASK(ax)) forj=1,2,....,m (3

k=1

Formulated HCoT. We formalize the thinking process of
HCoT as 7 = (V,&), where, each state v € V represents
an explanation of thought on HCoT, and &£ represents the
parent dependency edge of each explanation. We define the
question ¢ as the root state. Except for the root node, each
node is sampled through LLMs, and the distribution of each
node satisfies: v; ~ prm(vila, P(v;)), where, P(v;) is the
set of all parent explanation states of v;, and a represents the
answer related to question q.

Each edge (u,v) € & represents a relationship between
two different levels of explanations. The parent state u is the
inference process of the previous level, i.e., v is obtained from
u through LLMs. The leaf nodes V, are the final layer of
reasoning, focusing more on knowledge at the level of details.
For each explanatlon we construct a discriminant function
1={[lo,---,1 \VI} to determine whether it belongs to a node in
V, where [; € 1 represents a boolean value.

B. Hierarchical Consistent Learning

Refer to previous work [24], we input each explanation v;
in HCoT into the encoder of SLMs to obtain h; € R%™:
h; = Encoder(v;), where dim denotes the feature dimension.
We further utilize the softmax function to obtain the score
vector s € R™ for h;:

s = softmax(W " h;), 4
where n denotes the number of nodes in HCoT, and W €
R#m>n js a matrix. s = [s,],.,, indicates the score that
belongs to each node of HCoT in the hierarchical distribution.

For each explanation, the reasoning path it represents in
HCoT 7T is formalized as:

”\m}

U*,"' (5)

= arg max E SUP,
PCT
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TABLE I
A PERFORMANCE COMPARISON OF VARIOUS METHODS ON THE FACTUAL REASONING BENCHMARK

CREAK CSQA2 StrategyQA
Base Model Method LAS LASf]_ LASins LAS LASf]_ LASins LAS LASf]_ LASZ‘ns
CoT 26.34  26.36 26.63 3346  33.57 32.95 10.95 10.95 10.14
SCOTT 26.44  26.46 26.62 3343 3354 33.33 10.35 10.35 10.09
BERT-base HCoTT | 2741 2743 2752 | 3846 3857 3791 | 1049 1049 9.96
HCoTT+L,; | 27.6 27.62 27.97 394 39.51 39.07 11.31 11.31 10.87
CoT 28.07  28.07 28.19 37.52 37.53 36.36 14.25 14.26 13.72
SCOTT 28.84  28.84 28.81 38.71 38.72 37.51 14.33 14.34 13.98
RoBERTa-base | HCoTT | 2859 28.59 2856 | 40.62 40.63  39.68 | 1425 1426  13.72
HCoTT+L;, | 29.29  29.29 29.3 42.52 42.53 41.36 14.7 14.71 14.26
where P = {vl, e ,’U"p‘} C T represents the reasoning path  trastive Loss is given as:
from the question to the leaf node, i.e., vjp| € Vy. Ly (d;) = max {d; +mg,0}
Hierarchical Consistent Loss. To ensure the satisfaction of d; = (hi,h}) — (hi, b)) ®)

the two hierarchy constraints, we estimate a hierarchy-coherent
score map m from s. For explanation, the updated score vector

m = [my]yey is formalized as:
m, = min (sy) ifl, =1
u€A, (6)
1—m,=1-—max(s,) ifl,=0

u€cCy

where A, and C, denote the superclass and subclass sets of
explainations v in HCoT respectively, and s = [s, ], ., refers
to the original score vector of explanation.

We thus build a Hierarchical Consistent Loss as:

Lhpe(m) = Z I, log (my) — (1 - [U)

veV

=Y —lylog (mln (su)) -

veEV

(1 — lv) log (1 — max (su))
L. can better satisfy hierarchical constraints, allowing SLMs

to learn the hierarchical logic provided by LLMs and gain
diverse label understanding.

log (1 — my)

(N

C. Hierarchical Thought Contrastive Learning

Positive and Negative Samples. We define the function
¢(u,v) as the shortest path between two explanations u and v
on HCOoT, similar to the shortest path between two nodes in a
tree structure. On our HCoT, ¢(u,v) of w and v reflect their
relative distance in the hierarchical representation space, which
will serve as a semantic similarity metric. Our representation
loss is optimized on a set of explanation triplets {vi, vj' Uy },
where v;, v;", v; are anchor, positive and negative explanation
samples, respectively. {v,, v, } are sampled from the
whole training batch, such that ¢ (v, v;") < ¢ (vi,v;) on
HCoT. As such, in our representation loss, the positive samples
are more semantically similar to the anchor explanations in
HCoT, compared with the negative explanations.

Hierarchical Thought Contrastive Loss. With a valid ex-
planation triplet { Vi, ; ,v } our Hierarchical Thought Con-

where h;,h] h; € R¥™ are the embeddings of v;, v,
and v; , respectively, obtained from the encoder of SLMs,
and (-,-) is a cosine function to measure the similarity of
two inputs. The margin mg forces the gap of <hi, h; > and
<hi, hj> larger than mg. The margin mg is determined as:

mg = mg, + 0.5mg._
_ ©))
mg, = (¢ (vi,v; ) = ¢ (vi, ")) /2D
where m. is set as a constant for the tolerance of the intra-class
variance, i.e., maximum intra-class distance, mg, € [0,1] is a
dynamic violate margin, which is computed according to the

semantic relationships among v;, v;" , and v; over HCoT, and
D refers to the height of HCoT.

D. Overall Objective

Our complete learning objective consists of three parts:
category cross-entropy loss L. in Eq. 2 for prediction,
hierarchical consistency loss Lp. in Eq. 7 for hierarchical
supervised learning, and hierarchical thought contrastive loss
Lt in Eq. 8 for hierarchical representation learning. We define
the loss for hierarchical constraints as: Lp, Lhe + alpy,
where « is a trade-off hyperparameter. Therefore, our complete
training loss can be expressed as: Liptar = Lece + A,
where ) is a hyperparameter that compromises prediction and
hierarchical constraints. The hyperparameter « and \ are set
to 0.5 to achieve the optimal performance in experiments.

ITII. EXPERIMENTS
A. Experimental Setup

We chose three Faculty Reasoning datasets, namely
CREAK [25], StrategyQA [26], and CSQA2 [27], and three
Multiple-Choice datasets, namely CSQA [28], QASC [29],
and OBQA [30], as the main datasets for the experiments.To
measure how well the student network performs with and
without explanations on the same QA pair, we use LAS [31]
to evaluate HCoTT gains.

We use GPT-3.5-turbo-1106, a large language model devel-
oped by OpenAl, as the teacher network for the construction
of CoT and HCoT. We use RoBERTa [32], BERT [33] as
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TABLE II
A PERFORMANCE COMPARISON OF VARIOUS METHODS ON THE MULTIPLE-CHOICE QA BENCHMARK

CSQA OBQA QASC

Base Model Method LAS LAS; LAS;,, | LAS LAS; LAS;,, | LAS LAS; LASi.
CoT 7.89  14.67 2722 | 8.15 13.23 2120 | 6.61 2620 4632

SCOTT 16.05 27.10 4045 | 11.85 19.63 31.80 | 624 2821 55.10

BERT-base HCoTT 1594  26.90 4130 | 1545 2595 4140 | 874  33.56 62.76
HCoTT+L;, | 1621  27.35 4147 | 1570 26.08 41.20 | 11.49 4020  74.65

CoT 8.84  14.23 22.80 | 1030 14.10 20.80 | 494  17.26 26.53

SCOTT 1497  23.46 31.86 | 1595 23.98 33.80 | 035 0.15 -1.40

RoBERTa-base HCoTT 1639  25.67 33.88 | 19.15 28.10 38.00 | 9.78  33.15 56.31
HCoTT+L; | 16.54 2590  33.80 | 1925 28.29 3820 | 11.82 37.82 61.53

base models for our student network. For these models, we TABLE III

tested the adoption of two hierarchical loss functions and the
original cross-entropy loss in our experiments. The constant
m,. for the tolerance of the intra-class variance is set as 0.1.The
hidden size for text is set to 768. We employ Adam as the
optimizer with a weight decay of 0.01 and tune all models for
6 epochs. We set the learning rate of 3e-6 on all the datasets.
All experiments are conducted on 8 RTX 3090 GPUs. We will
publish the complete code after the paper is accepted.

B. Main Results

1) Evaluation on Faculty-Reasoning Tasks

We present experimental results on three Faculty-Reasoning
datasets in Table I, using LAS, LASy, and LAS;,, met-
rics. Key insights from Table I are: (1) All models show
significant metric improvements with CoT explanations com-
pared to using raw data, as explanations add prior knowl-
edge that enhances model fitting. (2) HCoTT+L; outper-
forms other methods in all metrics. HCoTT+L;, shows better
performance than HCoTT, which is weaker than CoT and
SCOTT in some indicators, indicating limitations in learning
explanatory semantics with hierarchical recursive sampling
alone. (3) RoBERTa-base shows more significant gains
over BERT-base, with notable differences across datasets,
highlighting that model performance depends on task charac-
teristics and base model capabilities. Stronger models better
leverage provided explanations to enhance reasoning ability.

2) Evaluation on Multiple-Choice QA Tasks

We present experimental results on three multiple-choice
QA datasets in Table II, using LAS, LASfi, and LAS;,s
metrics. Key insights from Table II are: (1) For complex
tasks, the data gain varies significantly across methods. Not all
methods effectively enhance model performance; for instance,
SCOTT showed a 1.40% drop in QASC’s LAS;,s due to
ineffective prior knowledge or interference. (2) HCoTT+Ly,
outperforms other methods across all indicators, especially
for more complex tasks. For example, in the same model
condition (RoBERTa-base), HCoTT+L,; achieved better
LAS;,s on CSQA, OBQA, and QASC compared to the
Faculty-Reasoning datasets in Table II. (3) HCoTT’s metrics
on Multiple-Choice QA datasets surpass those of SCOTT

A PERFORMANCE COMPARISON OF VARIOUS HIERARCHICAL LOSS
FUNCTIONS ON THE MULTIPLE BENCHMARK.

Datasets | Methods | LAS LASp1 LASis
HCOTT 28.59  28.59 28.56
HCoTT+L), | 29.18  29.18 29.15
CREAK | HCOoTT+L), | 28.96 2896  28.93
HCoTT+L;, | 29.29  29.29 29.30
HCoTT 40.62  40.63 39.68
HCoTT+L),. | 40.92  40.93 39.76
CSQA2 | HCoTT+Ly,; | 40.94  40.75 38.88
HCoTT+L;, | 4252 42.53 41.36
HCOTT 978  33.15 56.31
HCOoTT+L). | 11.74  37.63 61.42
QASC | HCoTT+L),; | 11.69 37.52 61.09
HCoTT+L;, | 11.82 37.82 61.53

and CoT, demonstrating that enhancing explained semantic
information effectively improves reasoning for complex tasks.

C. Ablation Study

1) The Effect of the Hierarchical Loss Enhancement

We present experimental results on three dataset types in
Table IIl. Using RoBERTa-base generally yields higher
scores than BERT-base. Compared to HCoTT, +Lhc and
+Lht improve all metrics, highlighting the effectiveness of
Hierarchical Consistent Loss and Hierarchical Thought Con-
trastive Loss. However, +Lhc and +Lht perform lower than
+Lh, suggesting that combining loss functions synergistically
enhances the student network’s ability. The ablation results
confirm significant performance gains from +Lhc and +Lp;.

IV. CONCLUSION

In this paper, we propose HCoTT, a hierarchical CoT
distillation framework with two main components: a hierar-
chical recursive sampling module for CoT construction and
a hierarchical learning module for mapping explanations to a
semantic space. Experimental results demonstrate that HCoTT
significantly boosts small model performance on Faculty-
Reasoning and Multiple-Choice QA tasks.
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