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Abstract

Large Vision-Language Models (LVLMs) may produce out-
puts that are unfaithful to reality, also known as visual hallu-
cinations (VH), which significantly impedes their real-world
usage. To alleviate VH, various decoding strategies have
been proposed to enhance visual information. However,
many of these methods may require secondary decoding and
rollback, which significantly reduces inference speed. In
this work, we propose an efficient plug-and-play decoding
algorithm via Visual-Aware Sparsification (VASparse) from
the perspective of token sparsity for mitigating VH. VAS-
parse is inspired by empirical observations: (1) the sparse
activation of attention in LVLMs, and (2) visual-agnostic to-
kens sparsification exacerbates VH. Based on these insights,
we propose a novel token sparsification strategy that bal-
ances efficiency and trustworthiness. Specifically, VASparse
implements a visual-aware token selection strategy during
decoding to reduce redundant tokens while preserving visual
context effectively. Additionally, we innovatively introduce a
sparse-based visual contrastive decoding method to recali-
brate the distribution of hallucinated outputs without the time
overhead associated with secondary decoding. Subsequently,
VASparse recalibrates attention scores to penalize attention
sinking of LVLMs towards text tokens. Extensive experiments
across four popular benchmarks confirm the effectiveness of
VASparse in mitigating VH across different LVLM families
without requiring additional training or post-processing. Im-
pressively, VASparse achieves state-of-the-art performance
for mitigating VH while maintaining competitive decoding
speed. Code is available at https://github.com/
mengchuang123/VASparse-github.

1. Introduction
Motivated by the success of Large Language Models
(LLMs), large vision-language models (LVLMs) have made
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Figure 1. Comparison of decoding speed and hallucination mit-
igation across methods using LLaVA-1.5 [28] (max new tokens
is 64), where a lower instance-level CHAIR score [35] indicates
less hallucination and higher TPS during decoding (measured by
tokens generated per second) reflects greater decoding efficiency.
We present the average of five runs on a single A100 GPU. Compar-
atively, our approach achieves both lower VH and higher efficiency.

significant advancements in cross-modal understanding and
generation through novel model architectures, training meth-
ods, and instruction-based data [15, 21, 28, 32, 49, 55].
LVLMs excel at translating complex visual patterns into
coherent language representations, leveraging the capabili-
ties of LLMs to significantly enhance visual understanding
performance and achieving impressive results across vari-
ous tasks [2, 13, 27]. However, LVLMs may generate out-
puts that inaccurately reflect the visual content provided,
a phenomenon termed visual hallucinations (VH), which
can affect their trustworthiness and suitability in different
applications across various domains [17, 24, 26, 31]. Ad-
ditionally, recent research shows that even advanced and
powerful LVLMs remain susceptible to VH [11, 16, 24].

Significant efforts have been directed toward mitigating
VH in LVLMs to improve both the reliability and fidelity of
their outputs. Existing strategies for reducing VH generally
fall into three primary categories: post-processing and self-
correction techniques [18, 46, 54], instruction-based fine-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4189

https://github.com/mengchuang123/VASparse-github
https://github.com/mengchuang123/VASparse-github


tuning [26, 48], and decoding strategy methods [7, 10, 20].
Although the progressive process has been achieved, these
approaches still present several significant limitations, in-
cluding: (1) a potential dependence on datasets and training,
or the addition of complex post-processing steps or high-
performing external LVLMs [26, 48, 54]; (2) the necessity
for external tools and time-consuming sampling processes
for visual localization [7]; (3) multi-round decoding and
repeated rollbacks significantly impact decoding speed, di-
minishing practical usability [18, 20]. As illustrated in Fig-
ure 1, such techniques may reduce VH but also compromise
efficiency. For instance, state-of-the-art HALC [7] has been
shown to reduce the average decoding speed substantially.
Consequently, there is an ongoing need for more efficient
solutions to mitigate VH while ensuring both efficiency and
trustworthiness of LVLMs.

In this work, we present VASparse, an efficient, plug-and-
play method for VH mitigation that balances efficiency and
trustworthiness from the perspective of visual-aware token
sparsity. VASparse is based on several key empirical obser-
vations (cf. Section 3): (1) the attention of LVLMs exhibits
a sparse pattern; (2) directly applying vision-agnostic spar-
sification methods (e.g., [6, 50]) for token pruning tends to
worsen visual fuzziness and exacerbate VH. Based on these
insights, VASparse incorporates the following innovative
strategies to balance fidelity with efficiency:

First, we frame the token sparsification and visual aware-
ness in LVLMs as a unified constrained optimization prob-
lem and devise a theoretically optimal token selection strat-
egy during decoding to solve it. Second, we introduce a
novel sparse-based visual contrastive decoding strategy to
reduce hallucinatory tokens. Specifically, we contrast and re-
distribute the logits generated by visual-agnostic and visual-
aware token sparsification to enhance information perception
of visual entities, which utilizes embeddings to achieve log-
its to avoid the time overhead associated with secondary
decoding. Third, we propose to penalize sinking attention
using cumulative attention scores to prevent the model from
overfocusing on language-biased or low-semantic tokens.

As illustrated in Figure 1, our VASparse method achieves
optimal performance in VH mitigation, with decoding speeds
exceeding those of existing VH mitigation methods. Exten-
sive experiments across four popular VH benchmarks and
three LVLM families including LLaVA-1.5 [28], MiniGPT-
4 [5] and mPLUG-Owl2 [44], demonstrate that VASparse not
only delivers superior performance but also achieves com-
petitive decoding speeds (e.g., achieving better performance
and up to 12.9 × speed improvement than HALC [7]).

In summary, our main contributions are threefold:
• We explore VH mitigation from the perspective of token

sparsification during decoding and present a novel, effi-
cient, plug-and-play approach that achieves both model
fidelity and efficiency, which unifies token sparsity and

visual-aware enhancement as an optimization problem.
• We propose a novel visual-aware token selection strat-

egy, along with a sparse-based visual contrastive decod-
ing method to alleviate VH which utilizes embeddings to
achieve contrasted logits and avoids multi-round decoding.

• Comprehensive experiments and evaluations demonstrate
that VASparse significantly outperforms existing VH miti-
gation methods in both performance and decoding speed.

2. Related Work
Large Vision-Language Model. In recent years, significant
progress has been made in visual understanding [51, 52]
and question answering [43, 47, 58, 61]. Recent efforts
have attempted to employ NLP methods and LLMs [9, 36–
39, 57, 59, 62, 63] as text decoders, combined with visual
decoders [33] and a projector, to construct high-performing
LVLMs. By integrating visual information with user in-
structions, LVLMs have achieved significant performance in
generating diverse responses and handling complex visual
understanding tasks. LLaVA [30] and LLaVA-1.5 [29] inte-
grate pretrained visual encoders and text decoders, leverag-
ing instruction fine-tuning to achieve strong multimodel un-
derstanding performance. InstructBLIP [12] and MiniGPT-
4 [56] utilize a Q-former [22] to aggregate multimodal fea-
tures, thereby reducing the number of visual tokens required.
With optimized architectures, training modes, and diverse
data, increasingly advanced LVLM families, such as Qwen-
VL [3], mPLUG-Owl2 [45], and InternVL [8], have also
been proposed. In this work, we use various architectures of
LLaVA-1.5 [29], MiniGPT-4 [56], and mPLUG-Owl2 [45]
to evaluate our approach for mitigating VH.

VH and Evaluation. LVLMs face challenges from VH
which specifically refers to instances where generated con-
tent includes inaccurate object descriptions or is unfaithful
to the input image information. This phenomenon has been
observed in both early BERT-based models [23] and recent
LVLMs [32, 49, 55]. In the realm of LVLMs, extensive
research has delved into the evaluation and detection of
VH [24, 31, 40]. CHAIR [35] is one of the most widely
adopted benchmarks for assessing VH. POPE [24] evalu-
ates VH through a binary classification framework, utilizing
precision, recall, and accuracy. Furthermore, HALC [7]
proposes an offline POPE (OPOPE) to enhance VH evalua-
tion. And MME [14] provides a comprehensive performance
assessment of LVLMs with respect to objects, attributes,
and other factors. We combine these metrics with decoding
speed to comprehensively evaluate the effectiveness of our
VASparse in reducing VH while maintaining high efficiency.

VH Mitigation. To mitigate VH, various strategies
have been developed. Current efforts for reducing VH
generally fall into three categories: post-processing tech-
niques [18, 54] and self-correction methods [46]; human
feedback-based methods [26, 48]; and decoding strategy
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Figure 2. VH evaluation and attention analysis using LLaVA-1.5 on the CHAIR benchmark: (a) token sorting by attention score; (b) token
sparsification effects observed with Vanilla Top-K, FastV [6], and SparseVLM [50] on sampled 500 images from the MSCOCO validation
set, where Vanilla Top-K denotes keeping tokens with top-K scores in 1-th layer; and (c) attention density distribution across various tokens.

Figure 3. Attention sinking phenomenon in LVLMs: in the 8-th
layer and 26-th attention head of LLaVA-1.5, exhibits a substantial
concentration of attention on specific tokens, e.g., <.> and <s>.

approaches [7, 10, 20, 60]. However, the first two strate-
gies may require additional datasets and training or the in-
tegration of more powerful external LVLMs [26, 48, 54].
The third approach [7, 10, 18–20, 20] primarily explores
contrastive decoding strategies based on visual compar-
isons, which may involve multiple rounds of decoding, time-
consuming rollbacks, or even the use of external detection
tools. Our work focuses on designing efficient, plug-and-
play methods that require no additional training.

3. Observation and Motivation
In this section, we present the motivation behind our VAS-
parse for mitigating VH. We first provide evidence of at-
tention sparsity in LVLMs and observe that vision-agnostic
sparsification can intensify VH. Additionally, we emphasize
applying penalties to tokens prone to attention sinking.

3.1. Sparse Activation in LVLM Attention
Observation: As shown in Figure 2a, we sort the attention
scores calculated for decoding tokens of LVLMs in ascend-
ing order. We observe that the attention scores exhibit a clear
long-tail distribution, with only a small portion of tokens
being heavily activated during decoding. Our results in Fig-

ure 2a indicate that retaining only the top 1% of tokens with
the highest attention scores can recall over 98% of the total
attention score. This suggests that attention in most layers
of the LVLM decoder is sparse.

Insights: Our findings substantiate that self-attention in
most layers of the LVLM decoder is sparse. This insight
suggests the potential for pruning corresponding tokens to
reduce computational cost during decoding.

3.2. Vision-Agnostic Sparsification Aggravates VH
Observation: Given the sparsity of attention in LVLMs,
we evaluate VH with vision-agnostic (do not adjust token
selection during decoding) token sparsification, including
the vanilla Top-K strategy, FastV [6] and SparseVLM [50].
As shown in Figure 2b, we observe that as the level of spar-
sification increases, the model becomes more prone to VH.

Insights: Our empirical findings indicate that these
vision-agnostic sparsification techniques exacerbate VH in
LVLMs, suggesting that merely applying such methods to
speed up decoding may undermine output trustworthiness.

3.3. Distinct Distribution of Image and Text Tokens
Observation: We analyze the attention distribution of visual
and textual tokens, with the results shown in Figure 2c. A
clear divergence in distribution is evident: image tokens
predominantly occupy lower-attention regions, whereas text
tokens concentrate in higher-attention regions.

Insights: These findings suggest that LVLMs tend to
prioritize text tokens over image tokens during decoding.
This explains why vision-agnostic token sparsification strate-
gies may worsen hallucinations (cf. Section 3.2): they are
more likely to prune low-attention image tokens, which may
contain crucial visual information. This insight highlights
the potential benefits of improving the model’s awareness of
image tokens during sparsification.

3.4. Attention Sinking on Textual Tokens
Observation: We further analyzed the attention patterns in
LVLMs and observed a significant attention ”sink” effect [18,

4191



LLM
(e.g., 

LLaMA)
Decoder of LVLMs

(e.g.,  LLaMA)

LLM 
Head

Image
Encoder

Projector Tokenizer

Image 
Encoder

Vision-Aware SparseMask-based Sparse

Language
Modeling Head     

Attention Sink

Sum

Query

Key

Image Tokens

Concat

sort

Vision-Aware Sparse via Token Selection

Sinking Attention Calibration
Next  Token：

Clock

Image token

Prompt token

Decoded token

Pruned token

Prompt:
Please describe this
image in detail

Ongoing Response:
On the beach, a man
holding a ...

Figure 4. The illustration of the proposed VASparse framework, which consists of (1) the visual-aware token selection designed to prune
the generated tokens during decoding; (2) a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated
outputs; and (3) the calibration strategy for punishing sinking attention.

42] in certain text tokens (as illustrated in Figure 3). This
phenomenon resembles the summary token and attention
bias effects observed in LLMs [42]. However, distinct from
LLMs, our findings indicate that in LVLMs, attention sink
tokens are primarily concentrated in text tokens, even when
text tokens are vastly outnumbered by image tokens. Notably,
these attention sink tokens are typically low in semantic
content, such as <.> and <s>.

Insights: Tokens with attention sinking in LVLMs ex-
hibit high attention and low semantic information. This
pattern suggests an intrinsic bias within LVLMs. However,
excessive focus on low-semantic tokens may cause the model
to rely heavily on linguistic priors and neglect visual infor-
mation. Therefore, applying penalties to these sinking tokens
could enhance the LVLM’s perception of visual tokens.

4. Methodology

4.1. Preliminaries
We consider a general LVLM θ, which integrates a vision
encoder, a vision-text interface, and a decoder of LLM. Ini-
tially, the image v undergoes processing through the vision
encoder to produce embeddings, which are then modified by
the interface (e.g., linear layer and Q-Former [22]) to align
with the query x. The combined data serves as input to the
decoder, which autoregressively generates the output y as:

yt ∼ pθ(yt|v, x, y<t) ∝ exp (logitθ(yt|v, x, y<t)) , (1)

where yt represents the t-th token of y, and y<t refers to
the sequence of tokens generated prior to the t-th step. The
function logitθ is the logit distribution function.

During decoding, the key K and value V within the at-
tention head are derived from preceding decoding steps and
stored in a key-value cache to avoid redundant computations.

Consequently, the attention with dimension D for decoding
the t-th token proceeds during decoding as follows:

Attention(qt,K≤t) = Softmax

(
qtK

⊤
≤t√
D

)
, (2)

where qt is the query for the current decoding step, and K≤t

represents the keys up to and including step t.
Our primary goal is to reduce generated hallucinatory

tokens to preserve the trustworthiness of the generated text
and maintain efficient decoding speed.

4.2. Problem Formulation
Building on our observations in Section 3, we decompose
the unified objective of achieving both trustworthiness and
efficiency for LVLMs into the following sub-goals:

Goal 1 (Token Sparsification): Given the sparsity of
LVLMs (cf. Section 3.1), we define token sparsification
through a binary mask M , where each element Mi ∈ {0, 1}.
Optimal sparsification minimizes

∑L
i=1 Mi while maximiz-

ing the recall of attention scores, aiming for q(M ⊙K)⊤ to
approximate the full attention score qK⊤ as closely as pos-
sible, where L is the generated sequence length and Mi = 0
indicates that the token Ki will be pruned during decoding.

Goal 2 (Vision-Aware Decoding): During decoding,
some tokens may hold lower attention scores but are crucial
for decoding visually relevant instances. Ignoring these to-
kens can exacerbate VH (cf. Section 3.2 and 3.3). We assign
each token a vision-aware saliency score Pi to represent
its importance for decoding visual instances. A higher Pi

indicates that the token should be more likely to be retained.
The above objectives can be summarized as maintain-

ing the original attention scores as much as possible while
sparsifying the tokens and considering visual information
during the decoding process. We innovatively unify these
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optimization goals into a constrained optimization problem
which minimizes the error between the recalled attention
scores and the full attention scores:

Definition 1 (Unified Objective): We define the joint ob-
jective of trustworthiness and efficiency in LVLMs as the
solution to the following constrained optimization problem:

min
M

E(M) =
∥∥qK⊤ − q(M ⊙K)⊤

∥∥2 − λP ·M

=

L∑
i=1

(⟨q,Ki⟩ −Mi⟨q,Ki⟩)2 − λPi ·Mi

s.t. Mi ∈{0, 1},∀i = 1, 2, . . . , L;

L∑
i=1

Mi = S,

(3)

where, q ∈ R1×D, Ki ∈ K and Ki ∈ R1×D, || · ||2 repre-
sents the L2 norm. ⟨·, ·⟩ denotes the inner product, and S
is the sparsity rate, and λ is a tradeoff parameter used to
balance visual perception and attention recall.

The objective 1 inherently includes the following con-
straints: (1) Sparsity Constraint:

∑L
i=1 Mi = S, and

S denotes the number of non-zero elements in M , with
S < L and Mi ∈ {0, 1}; (2) Visual Saliency Constraint:
P = {Pi}Li=1 represents the visual-aware scores. To solve
this problem 1 efficiently, we propose a novel visual-aware
token selection strategy to achieve efficient VH mitigation
as the overall framework shown in Figure 4.

4.3. Visual-Aware Token Selection
To solve the unified objective (Def. 1) and mitigate VH effi-
ciently, we propose a visual-aware token selection strategy.
Specifically, for each attention head, we rank tokens based
on an aggregated score δi in descending order, and setting
Mi = 1 for the top-S tokens and Mi = 0 for the rest. The
proposed aggregation score δi for each token is defined as:

δi = (⟨q,Ki⟩)2 + λPi, (4)

where, ⟨·, ·⟩ denotes the inner product, the score δi combines
both the attention score ⟨q,K⟩ and the visual saliency Pi,
ensuring that the visually relevant tokens are retained while
preserving computational efficiency.

To obtain visual-aware scores (Goal 2 in Section 4.2),
we utilize the attention scores of each generated token and
the image tokens, which are treated as the visual saliency
scores for the respective tokens. Specifically, we compute
the visual saliency score P by retaining the weights from the
last attention head in the LVLM’s historical calculations:

Pi =
exp

(∑
k∈I(v) ai,k

)
∑

j exp
(∑

k∈I(v) aj,k

) , (5)

where I(v) represents the set of image tokens and ai,j is the
attention score between tokens i and j.

By using the image token attention scores as a measure
of significance, we can effectively leverage the attention
weights already computed, while avoiding the introduction
of additional computational overhead. For the discarded
token set T = {Ki | Mi = 0}, we employ the k-nearest
neighbor density peak aggregation algorithm [34] to achieve
adaptive token aggregation. Tokens within the same cluster
are summed and retained as a single aggregated token.

4.4. Sparse-based Visual Contrastive Decoding
Based on our empirical observations, we can leverage the
finding that vision-agnostic token sparsification intensifies
VH to mitigate language bias in the output distribution. We
innovatively propose to amplify the informational contrast
within the visual context by redistributing logits in the out-
put by contrasting the decoding probability distributions
of vision-aware and vision-agnostic (mask-based) sparsi-
fications Sτ and Sm. However, directly using the output
distribution from LVLMs to obtain the contrastive logit dis-
tribution would inevitably incur significant overhead due to
the secondary decoding process. To address this, we propose
using only the embeddings of vision-agnostic tokens as in-
put to the language decoding head ϕ of the LLM decoder
to obtain the logit distribution, without going through the
full text decoder. Specifically, we adopt the proposed visual-
aware sparsification strategy (cf. Section 4.3) to obtain the
logit distribution logitθ. Then, we randomly mask the visual
tokens and input their embeddings directly into the language
decoding head of the LLM to obtain the contrastive logit
distribution logitϕ. Finally, we assign the logit distributions
of the tokens to obtain the final results:

yt ∼ (1 + α) · logitθ (· | v, x, Sτ (y<t))

−α · logitϕ (· | Sm(v), x, y<t) ,
(6)

where, α is a trade-off. Note that our decoding strategy
bypasses the LVLM’s decoder (e.g., a LLaMA2-7B [39]),
thereby avoiding the secondary computational overhead. In-
spired by [20], we apply adaptive plausibility constraints to
our sparse-based visual contrastive decoding.

4.5. Sinking Attention Penalty
Our observations (cf. Section 3.4) indicate a pronounced
attention sinking in LVLMs, where tokens receive dispro-
portionately high attention scores despite low semantic in-
formation. Excessive focus on such tokens can blur vi-
sual information during decoding. Therefore, a targeted
penalty should be applied to tokens exhibiting abnormally
high attention scores. We define a penalty weight matrix
W = {w1, · · · , wL}, where each wi serves as a penalty fac-
tor for anomalous attention scores. To efficiently implement
the penalty for sinking attention, we accumulate the attention
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Methods
LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

CHAIRi ↓ CHAIRs ↓ TPS↑ CHAIRi ↓ CHAIRs ↓ TPS↑ CHAIRi ↓ CHAIRs ↓ TPS↑

FastV∗ 8.53 26.76 33.21 16.72 41.32 38.29 11.40 38.49 24.6
SparseVLM∗ 8.44 26.11 32.47 16.38 40.93 37.81 11.35 38.99 23.73
Woodpecker† 6.72 19.79 - 12.09 31.69 - 8.99 25.05 -
LURE† 6.67 19.75 - 11.80 31.67 - 7.78 22.53 -
Greedy 7.22 22.20 31.25 12.17 31.47 36.64 8.94 24.42 20.36
Beam Search 6.43 19.97 29.91 11.57 31.80 32.27 8.72 23.87 19.62
OPERA 7.04 21.28 4.36 12.34 32.63 5.57 9.07 24.48 3.56
VCD 7.02 21.40 17.58 11.90 30.60 17.69 9.13 24.89 9.89
DoLa 6.44 20.23 23.61 11.62 30.58 25.01 8.88 24.67 14.74
SID 6.95 20.83 20.88 11.85 31.73 22.95 8.54 23.55 12.95
HALC 6.27 19.64 2.15 11.69 31.76 3.86 7.71 23.48 1.52

Ours 5.82 18.51 27.73 11.35 30.19 30.87 7.36 22.03 18.18

Table 1. Comparison of the average results (instance levels CHAIRi and sentence levels CHAIRs ) and token per second (TPS) during
decoding with baselines on MSCOCO of five random runs. ∗ represents the image token sparsity method and † is the post-hoc methods.

scores of each token with subsequent queries to evaluate the
degree of sinking. We then apply softmax normalization
to obtain a calibration weight for sinking attention:

wj =
exp

(∑L
i=j ai,j

)
∑L

k=1 exp
(∑L

i=k ai,k

) , (7)

where ai,j denotes the element in the i-th row and j-th col-
umn of the attention matrix, and wj represents the j-th el-
ement of the weight vector W after applying the softmax
operation. This approach ensures that sinking attention is
evaluated progressively across subsequent queries, and W
will be utilized as a weight as (1 + β)qK⊤ − βW ⊙ qK⊤

during decoding, as shown in Figure 4.

4.6. Theoretical Analysis
Theorem 1 (Global Optimality): By employing the selec-
tion strategy defined in Section 4.3, we can obtain a globally
optimal solution for the optimization problem defined in
Def. 1. Specifically, the sparse mask M derived from this
selection strategy satisfies:

M∗ = argmin
M

E(M). (8)

Intuition: The proof and more analysis of the theorem 1
is provided in the Appendix. This theorem ensures that
the proposed token selection strategy yields the minimum
error E(M). This theoretical analysis further validates the
effectiveness of the proposed VASparse in achieving both
token sparsification and efficient visual perception.

5. Experiments
Benchmarks. Following common settings [7, 20, 46],
We evaluate the effectiveness of our VASparse in VH mit-
igation on four popular benchmarks: (1) quantitative met-
rics CHAIR [35] on MSCOCO dataset [25]; (2) the offline

Polling-based Object Probing Evaluation (POPE) [7, 24]
on the MSCOCO dataset; (3) general-purposed Multimodal
Large Language Model Evaluation (MME) benchmark [14];
(4) GPT-4 assisted benchmark [53] relies on the advanced
GPT-4 to judge the fine-grained VH and calculate Sentence-
level Hallucination Ratio (SHR).

Baselines. We compare our VASparse with greedy decod-
ing and beam search decoding, and various state-of-the-art
(SOTA) decoding methods as baselines, including DoLa [10],
OPERA [18], VCD [20], SID [19] and HALC [7]. We also
compare the post-processing VH elimination method (i.e.,
Woodpecker [46], LURE [54]) with some token sparsity
methods (i.e., FastV [6] and SparseVLMs [50]).

Backbones. Following previous settings [7, 20], we
select popular LVLMs families, e.g., LLaVA-1.5 [28],
MiniGPT-4 [5] and mPLUG-Owl2 [44] as the base modal for
all baselines except Woodpecker and LURE, where, Wood-
pecker and LURE utilize extra LLMs, i.e., ChatGPT [4] and
GPT-4 [1], for self-correction and distillation. We investigate
the VH of these LVLMs under different decoding to evaluate
the effectiveness of our VASparse.

Settings. We implement the proposed VASparse based
on HuggingFace Transformers [41] and combine it with
beam search for decoding. We evaluate settings with maxi-
mum generation lengths Lmax of 64 and 512. When Lmax

is 64, the beam size is set to 3, and for Lmax = 512, it is set
to 2. The sparsity rate top-S is set to 0.9 times L, and the
image masking sparsity rate for Sm is set to 0.5. The hyper-
parameter λ in Eq. 4, α in Eq. 6 and β in Section 4.5 are set
to 0.1. The decoding process of LVLMs and all experiments
are performed on 8 A100 GPUs. For token sparsity methods,
we retain 75% of tokens during inference. Other methods
use the settings as described in original papers. More details
and results under Lmax = 512 are provided in Appendix.
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Methods
LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

Random Popular Adversarial Random Popular Adversarial Random Popular Adversarial

Woodpecker† 59.73 58.53 58.07 53.84 51.70 51.27 58.10 53.07 55.42
LURE† 60.08 58.63 58.34 53.91 52.37 51.38 58.28 53.15 55.65
Greedy 58.75 57.42 56.64 53.71 51.68 51.92 57.40 53.43 55.43
Beam Search 60.38 58.98 58.43 53.97 52.27 51.93 55.31 52.89 53.12
OPERA 59.80 58.42 58.00 53.08 51.32 51.20 55.70 53.41 53.66
VCD 60.05 58.34 58.02 53.26 51.50 51.07 58.63 54.87 56.13
DoLa 59.36 58.08 57.44 53.83 51.93 51.72 57.21 53.38 55.24
SID 61.63 59.62 58.83 53.86 51.98 51.77 55.82 53.46 56.07
HALC 60.46 59.33 58.50 53.93 52.06 51.80 56.29 53.38 55.84

Ours 62.13 60.93 59.20 54.87 52.93 52.70 58.27 55.28 56.77

Table 2. Comparison of the average F1-score evaluation results under different settings (i.e., Random, Popular, Adversarial) with different
baselines and our VASparse on offline POPE benchmark [7, 24] of five random runs, with whole statistical results in Appendix. Higher
F1-score indicate better performance and bold indicates the best results. † denotes the post-hoc method.

Methods

LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

Object-level↑ Attribute-level↑ Object-level↑ Attribute-level↑ Object-level↑ Attribute-level↑
Existence Count Position Color Existence Count Position Color Existence Count Position Color

Greedy 165.67 120.00 110.67 148.33 137.00 93.00 75.00 125.00 167.00 120.00 105.00 145.00
DoLa 170.00 120.00 106.67 150.67 137.00 90.00 75.33 122.67 167.00 125.00 110.00 147.67
OPERA 165.00 115.67 104.00 145.00 140.67 92.33 73.00 125.00 167.00 122.33 100.00 145.00
VCD 175.33 130.33 115.00 155.00 142.00 95.33 71.33 129.00 171.33 125.00 107.33 150.00
HALC 167.67 121.33 106.67 150.67 140.00 92.67 71.33 122.67 167.00 120.33 108.67 145.00

Ours 180.00 132.67 121.33 160.00 147.33 98.67 78.67 133.00 175.00 130.00 110.67 155.00

Table 3. Results on the subset of the MME benchmark for evaluating object-level and attribute-level VH, where the best performances within
each setting are bolded. We randomly run it five times to obtain the average result, with the whole statistical results in Appendix.

5.1. Main Results

CHAIR Evaluation. Following HALC [7], we set ‘Please
describe this image in detail.’ as the input prompt and uti-
lize generated tokens per second (TPS) to evaluate the ef-
ficiency, as results are shown in Table 1. Based on the
results, we have several detailed observations: (1) It can be
observed that our method significantly outperforms existing
decoding and post-processing baselines for reducing VH.
Our VASparse achieved the lowest VH rate at both the sen-
tence and instance levels across three families of LVLMs,
which demonstrates the superiority and generalizability of
our method in alleviating VH. (2) Compared to SOTA de-
coding methods, VASparse maintains competitive decoding
speed without secondary decoding or reprocessing via extra
LLMs, e.g., achieving speeds that are 12.9× and 6.4× faster
than HALC [7] and OPERA [18], respectively. (3) Although
the sparsification method accelerates the inference speed, it
exacerbates visual ambiguity, which in turn aggravates VH.

POPE Evaluation. Following HALC [7], we utilize offline
POPE (OPOPE) benchmark with F1-score as metrics to eval-

uate VH, which replaces the live interactions of POPE with
offline checks. As shown in Table 2, we have several obser-
vations: (1) VASparse consistently achieves optimal results
in most settings, outperforming both SOTA decoding meth-
ods and post-processing methods. This further demonstrates
the effectiveness of VASparse; (2) VASparse effectively miti-
gates VH across three different LVLM architectures, demon-
strating the versatility and plug-and-play nature.
MME Benchmarks. Following [7, 20, 46], we adopt object-
level subsets (“existence” and “count”) and attribute-level
subsets ( “position” and “color”) of MME benchmark [14].
to evaluate VH. As shown in Table 3, we can observe that: (1)
Our VASparse can significantly reduce object and attribute
hallucination, and achieve optimal VH mitigation perfor-
mance. (2) HALC and OPERA do not exhibit significant
VH mitigation on the MME benchmark. This is because the
MME evaluation is designed as a binary classification task,
requiring LVLMs to output only a few tokens, which limits
the effectiveness of methods that need to decode sequences
of a certain length and handle special entity tokens.
GPT-4 Assisted Benchmarks. We conduct experiments on
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G. Settings
LLaVA-1.5 MiniGPT-4

CHAIRi ↓ CHAIRs ↓ TPS↑ CHAIRi ↓ CHAIRs ↓ TPS↑

1
w/o Whole Visual-Aware Token Selection (i.e., Eq. 4) 6.43 19.75 25.54 11.63 30.51 27.55
w/o Visual Perception Score P in Eq. 4 6.06 19.20 27.80 11.57 31.05 30.96

2
w/o Whole SVCD (i.e., Eq. 6) 6.91 21.42 30.68 11.85 30.93 35.83
w/o Mask-based Sparsification Sm in Eq. 6 6.31 18.85 27.47 11.58 31.26 30.30

3 w/o Sinking Attention Penalty (i.e., Eq. 7) 6.32 19.39 27.96 11.52 31.04 30.92

4 Our Full VASparse 5.82 18.51 27.73 11.35 30.19 30.87

Table 4. Ablation experiments on the CHAIR benchmark, with the best results highlighted in bold and the whole results in Appendix.

Methods LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

Greedy 36.3 46.7 42.3
OPERA 34.2 45.9 41.7
VCD 34.6 46.0 41.9
HALC 33.9 45.8 41.7
Ours 33.5 45.2 41.1

Table 5. Performance (SHR) comparison on GPT-4 assisted bench-
mark, where, the lower value denotes the lower VH.

the GPT-4 assisted benchmark to evaluate the fine-grained
VH of different methods, and the results are presented in
Table 5. We can observe that our VASparse achieved the best
SHR metric among the four LVLMs, which further confirms
the superiority of our method in mitigating VH.

5.2. Method Analysis
We conduct ablation experiments using CHAIR on
MSCOCO to evaluate the effectiveness of the components
of our proposed VASparse in detail. Specifically, we eval-
uate the effectiveness of the components by removing or
modifying the specific settings as results shown in Table 5.
Effect of the Visual-Aware Token Selection. As shown in
Groups 1 and 4 in Table 4, removing the whole visual-aware
token selection strategy leads to a performance decrease and
reduces decoding speed. This suggests that sparsifying the
model’s decoding sequence to some extent can mitigate the
language bias in LVLMs and reduce the involvement of cer-
tain tokens in attention computation. Moreover, removing
the visual perception score also results in a performance
decline. These results consistently demonstrate the effective-
ness of our visual-aware token selection strategy.
Effect of the Sparse-based Visual Contrastive Decod-
ing. To evaluate the effectiveness of our sparse-based vi-
sual contrastive decoding (SVCD), we remove both the full
SVCD and the mask-based sparsification Sm in Eq. 6. As
shown in Groups 2 and 4 of Table 4, we observe a significant
performance decline, which further validates the effective-
ness of our SVCD and mask-based sparsification strategy.
Effect of the Sinking Attention Calibration. Moreover,
we removed the calibration mechanism for the sinking at-
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Figure 5. Performance and efficiency analysis of different logit
sources: (a) the impact of using different early stopping layers on
LLaVA-1.5 performance; (b) the impact of using different early
stopping layers on decoding speeds (TPS).

tention, and observed a further decline in the method’s VH
mitigation effect. This further demonstrates the relevance of
sinking attention to VH and the effectiveness of the proposed
attention calibration strategy.
Decoding Efficiency Analysis. To further validate the effect
of using embedding features to compute the proposed SVCD,
we calculate the contrastive logits from features at different
depths of the LVLM decoder to calibrate the distribution,
and observe performance and decoding speed, as shown in
Figure 5. We observe that by using only embedded features
(i.e., stop layer is 0), our method already achieves good VH
mitigation performance while attaining optimal decoding
speed. In this way, our VASparse effectively avoids the time-
consuming secondary decoding process, achieving a balance
between performance and efficiency.

6. Conclusion
This work proposes an efficient, plug-and-play decoding
strategy, VASparse, to mitigate VH in LVLMs. Inspired
by the sparse activation pattern of LVLMs and the role of
visual-agnostic token sparsification in worsening VH, we
propose a visual-aware token selection strategy during decod-
ing. Subsequently, we innovatively introduce sparse-based
visual contrastive decoding to recalibrate the logits without
secondary decoding, and adjust sinking attention. Extensive
experiments show the effectiveness of VASparse in reducing
VH across various benchmarks and LVLM families.

4196



Acknowledgements
This work is supported by Guangdong Provincial
Key Laboratory of Ultra High Definition Immersive
Media Technology(Grant No. 2024B1212010006)

References
[1] OpenAI Josh Achiam and et al. Steven Adler. Gpt-4 technical

report. 2023. 6
[2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan

Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A frontier large vision-language model with
versatile abilities. ArXiv, abs/2308.12966, 2023. 1

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A frontier large vision-language model with
versatile abilities. arXiv preprint arXiv:2308.12966, 2023. 2

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot
learners. ArXiv, abs/2005.14165, 2020. 6

[5] Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas
Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-
v2: large language model as a unified interface for vision-
language multi-task learning. ArXiv, abs/2310.09478, 2023.
2, 6

[6] Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang
Lin, Chang Zhou, and Baobao Chang. An image is worth 1/2
tokens after layer 2: Plug-and-play inference acceleration for
large vision-language models, 2024. 2, 3, 6

[7] Zhaorun Chen, Zhaorun Chen, Zhuokai Zhao, Hongyin Luo,
Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object halluci-
nation reduction via adaptive focal-contrast decoding. ArXiv,
abs/2403.00425, 2024. 2, 3, 6, 7

[8] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, et al. Internvl: Scaling up vision foundation models
and aligning for generic visual-linguistic tasks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185–24198, 2024. 2

[9] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao
Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao
Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023), 2(3):6,
2023. 2

[10] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim,
James R. Glass, and Pengcheng He. Dola: Decoding by con-
trasting layers improves factuality in large language models.
ArXiv, abs/2309.03883, 2023. 2, 3, 6

[11] Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su, and Pascale Fung.
Plausible may not be faithful: Probing object hallucination in
vision-language pre-training. ArXiv, abs/2210.07688, 2022.
1

[12] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung,
and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning, 2023. 2

[13] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Albert Li, Pas-
cale Fung, and Steven C. H. Hoi. Instructblip: Towards
general-purpose vision-language models with instruction tun-
ing. ArXiv, abs/2305.06500, 2023. 1

[14] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Meng-
dan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A compre-
hensive evaluation benchmark for multimodal large language
models. ArXiv, abs/2306.13394, 2023. 2, 6, 7

[15] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao
Zheng, Qianmengke Zhao, Kuikun Liu, Wenwei Zhang, Ping
Luo, and Kai Chen. Multimodal-gpt: A vision and language
model for dialogue with humans. ArXiv, abs/2305.04790,
2023. 1

[16] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia
Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang,
Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusion-
bench: An advanced diagnostic suite for entangled language
hallucination and visual illusion in large vision-language mod-
els. 2023. 1

[17] Anish Gunjal, Jihan Yin, and Erhan Bas. Detecting and
preventing hallucinations in large vision language models. In
AAAI Conference on Artificial Intelligence, 2023. 1

[18] Qidong Huang, Xiao wen Dong, Pan Zhang, Bin Wang,
Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and
Neng H. Yu. Opera: Alleviating hallucination in multi-
modal large language models via over-trust penalty and
retrospection-allocation. ArXiv, abs/2311.17911, 2023. 1, 2,
3, 6, 7

[19] Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang,
Zhicheng Chen, and Peilin Zhao. Self-introspective decoding:
Alleviating hallucinations for large vision-language models,
2024. 6

[20] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian
Lu, Chunyan Miao, and Li Bing. Mitigating object halluci-
nations in large vision-language models through visual con-
trastive decoding. ArXiv, abs/2311.16922, 2023. 2, 3, 5, 6,
7

[21] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. Otter: A multi-modal model
with in-context instruction tuning. ArXiv, abs/2305.03726,
2023. 1

[22] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. In International
conference on machine learning, pages 19730–19742. PMLR,
2023. 2, 4

[23] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and performant

4197



baseline for vision and language. ArXiv, abs/1908.03557,
2019. 2

[24] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji rong Wen. Evaluating object hallucination in
large vision-language models. In Conference on Empirical
Methods in Natural Language Processing, 2023. 1, 2, 6, 7

[25] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, 2014. 6

[26] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Ya-
coob, and Lijuan Wang. Mitigating hallucination in large
multi-modal models via robust instruction tuning. 2023. 1, 2,
3

[27] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. ArXiv,
abs/2310.03744, 2023. 1

[28] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. ArXiv, abs/2304.08485, 2023. 1, 2,
6

[29] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 26296–26306, 2024. 2

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. Advances in neural information
processing systems, 36, 2024. 2

[31] Holy Lovenia, Wenliang Dai, Samuel Cahyawijaya, Ziwei Ji,
and Pascale Fung. Negative object presence evaluation (nope)
to measure object hallucination in vision-language models.
ArXiv, abs/2310.05338, 2023. 1, 2

[32] Muhammad Maaz, Hanoona Abdul Rasheed, Salman H.
Khan, and Fahad Shahbaz Khan. Video-chatgpt: Towards
detailed video understanding via large vision and language
models. ArXiv, abs/2306.05424, 2023. 1, 2

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 2

[34] Alex Rodriguez and Alessandro Laio. Clustering by fast
search and find of density peaks. science, 344(6191):1492–
1496, 2014. 5

[35] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
Darrell, and Kate Saenko. Object hallucination in image
captioning. In Conference on Empirical Methods in Natural
Language Processing, 2018. 1, 2, 6

[36] Jinghan Ru, Yuxin Xie, Xianwei Zhuang, Yuguo Yin, and
Yuexian Zou. Do we really have to filter out random noise in
pre-training data for language models?, 2025. 2

[37] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B
Hashimoto. Stanford alpaca: An instruction-following llama
model, 2023.

[38] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.

Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-
jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023. 2, 5

[40] Junyan Wang, Yi Zhou, Guohai Xu, Pengcheng Shi, Chenlin
Zhao, Haiyang Xu, Qinghao Ye, Mingshi Yan, Ji Zhang,
Jihua Zhu, Jitao Sang, and Haoyu Tang. Evaluation and
analysis of hallucination in large vision-language models.
ArXiv, abs/2308.15126, 2023. 2

[41] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
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