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Abstract. Conventional time series forecasting approaches often face challenges 
in modeling intricate multivariate correlations and fail to jointly capture local tem-
poral dynamics as well as long-range dependencies. To overcome these issues, 
we propose a novel forecasting framework that leverages multi-granularity fea-
ture extraction based on graph neural network (GNN). Our approach integrates 
information at the node, edge, and subgraph levels to construct a comprehen-
sive representation that encompasses both fine-grained and global structures in 
multivariate time series data. A Graph Attention Network (GAT) is employed to 
adaptively assign importance weights between nodes and their neighbors, enabling 
the model to effectively capture complex spatial–temporal interactions. Extensive 
experiments conducted on four benchmark datasets across multiple prediction 
horizons demonstrate that our method consistently outperforms existing baselines 
in predictive accuracy. Beyond accuracy improvements, the model’s ability to rep-
resent structural intricacies of time series data enhances its applicability to a wide 
range of forecasting scenarios across diverse domains. 

Keywords: Time Series Forecasting · Graph neutral network · 
Multi-Granularity Feature · Long-term Time Series Forecasting 

1 Introduction 

Time series forecasting plays a pivotal role in facilitating decision-making, risk man-
agement and operational optimization across diverse domains. With the rapid growth of 
interconnected infrastructures like smart cities, smart grids, and the IoT, the volume and 
complexity of time series data have increased dramatically, which highlights the need 
for more advanced approaches capable of capturing rich multivariate dependencies [1]. 

Time series data, characterized by temporal dependencies, involves observations 
ordered over time [2]. Forecasting relies on modeling these dependencies to predict future 
values based on historical data. Traditional methods lack scalability and applicability, 
while deep learning methods face challenges such as poor interpretability, overfitting, and 
high computational costs [3]. Extracting and leveraging the intricate structural features 
of time series data remains a key challenge [4].
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Transformer-based models like Informer [5] and Reformer [6] have shown significant 
advantages in capturing global features of time series. However, they encounter chal-
lenges in capturing local features, particularly high-frequency information within time 
series. The key challenges in multivariate long-term forecasting tasks can be summarized 
as follows: 

• Limitations in modeling nonlinear relationships in multivariate long sequences. 
Traditional methods struggle to capture the complex nonlinear relationships among 
variables in multivariate time series. These methods also face challenges in handling 
long-term forecasting tasks, where issues such as high computational complexity and 
reduced accuracy often arise. 

• Lack of unified representation of global and local features. Many existing 
approaches face limitations in simultaneously capturing local dynamic features and 
global dependencies in time series. Additionally, some methods are insufficient for 
addressing diverse characteristics in time series, such as periodicity and trends. 

To overcome these issues, we propose MGTDGraph (Multi-Granularity Time-Dim 
Graph), which adopts a multi-granularity feature extraction strategy to comprehensively 
capture both local temporal dynamics and long-range dependencies in time series data. 
By performing detailed feature extraction across different granularity levels of subse-
quences, MGTDGraph enables in-depth analysis and understanding from local to global 
perspectives. Our contributions are as follows: 

• A novel time series forecasting method based on multi-granularity feature 
extraction. This paper introduces a method that extracts time series features at 
three levels (node-level, edge-level, and subgraph-level) and integrates these multi-
granularity features to comprehensively represent the local dynamics and global 
dependencies of time series data. By fusing multi- granularity features, the model 
provides richer hierarchical information for each node, enabling it to better capture 
complex patterns and multi-scale dependencies in graphs. 

• Dynamic modeling of nonlinear multivariate relationships. By incorporating GAT, 
this paper applies self-attention mechanisms to time series forecasting, dynamically 
assigning importance weights to neighboring nodes. This effectively captures the 
nonlinear dependencies among variables in multivariate time series. GAT adaptively 
assigns weights to different neighbors through self-attention, overcoming the lim-
itations of fixed weights in traditional convolution methods. By integrating multi-
granularity features and attention mechanisms, the model incorporates both global 
and local information into node representations, enhancing the performance of graph 
tasks. 

• The experimental results demonstrate that the proposed method significantly outper-
forms mainstream methods, showcasing its strong adaptability in modeling complex 
scenario. 

The remainder of this paper is organized as follows: related work Sect. 2, 
methodology Sect. 3, experiments Sect. 4, and conclusions Sect. 5.
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2 Related Work 

Time series forecasting has been widely explored using traditional statistical models, 
machine learning approaches, deep learning architectures, and more recently, graph-
based neural networks. 

2.1 Time Series Forecasting Based on Statistical and Machine Learning 
Approaches 

Statistical methods forecast time series by modeling temporal evolution through math-
ematical parameters. These methods, such as AR [8], ARIMA [9] and VAR [10] are  
computationally efficient and interpretable, but rely on strong linearity assumptions and 
struggle to model complex multivariate and nonlinear time series. 

Machine learning models such as ICA-SVR [11], RHWFTS-ICA [12], and WLGP 
[13] leverage feature decomposition and hybrid modeling to capture nonlinear dependen-
cies in time series data. While these approaches improve over purely statistical models, 
they often rely on manual design choices and exhibit limited robustness when facing 
highly non-stationary or structurally complex sequences. 

2.2 Time Series Forecasting Models Based on Deep Learning 

Deep learning models have demonstrated strong capabilities in modeling complex tem-
poral dependencies, particularly through architectures like RNNs and LSTMs. Early 
works such as ICA-RNN [14], N-BEATS-RNN [15], EMD-LSTM [16], and DLSTM 
[17] explored hybrid designs combining signal decomposition, recurrent structures, and 
evolutionary optimization. More recently, Transformer-based models have gained promi-
nence in this area. Autoformer [18] introduces a decomposition-based autocorrelation 
mechanism to capture periodicity in long sequences, while FEDformer [19] enhances 
this by integrating Fourier analysis to model frequency-domain representations. Despite 
their strengths, these models often emphasize global dependencies, which can hinder 
the learning of local temporal dynamics and lead to information loss when aggressively 
reducing complexity. 

2.3 Time Series Forecasting Models Based on Graph Neural Networks 

To address spatial dependencies in multivariate time series, such as traffic flow pre-
diction, recent work has turned to Graph Neural Networks (GNNs), which effectively 
encode relational structures among variables. DCRNN [20] employs diffusion convo-
lutions within a recurrent framework to model spatiotemporal dependencies. ASTGCN 
[21] extends this by introducing attention mechanisms across multiple temporal scales, 
including recent, periodic, and long-term dependencies. GMAN [22] and related models 
[23] adopt spatiotemporal attention blocks and adaptive adjacency learning to capture 
dynamic spatial structures. PDFormer [24], a recent advancement, incorporates prop-
agation delay modeling and spatial self-attention to better represent both short-range 
and long-range dependencies. These methods effectively capture spatial correlations, 
but often lack mechanisms for integrating multi-granularity temporal representations.
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3 Method  

We propose a graph-based time series forecasting framework that extracts multi-
granularity features at the node, edge, and subgraph levels to model both local and global 
temporal dependencies. The overall structure of our proposed method is illustrated in 
Fig. 1. 

Fig. 1. Overview of MGTDGraph. 

3.1 Problem Definition 

Let n be the length of the input time series. Denote it by 

χ = {x1, x2, . . . ,  xn} (1) 

where each xi ∈ Rd is a d -dimentional vector of variables at time index i. Our goal is to 
predict n′ future steps: 

λ = {
y1, y2, . . . ,  yn′

}
, yi ∈ Rd (2) 

such that λ = G(χ ), with G(·) being our learnable mapping. 

3.2 Multi-granularity Feature Extraction 

To extract sequence features from node-level, edge-level, and subgraph-level, we apply 
multi-granularity feature extraction. 

In real-world datasets, the overall data distribution changes over time. Therefore, a 
Reversible Instance Normalization (RevIN) [28] module is used to dynamically normal-
ize the input sequences. Let μ and σ be the mean and standard deviation of each block 
or entire sequence. For each time step xi: 

x′
i = xi−μ 

σ , x′
i ← ηx′

i + ζ (3) 

where η and ζ are learnable scalars.
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After applying RevIN, we map the normalized input to an embedding space. The 
transformation is achieved through a simple linear projection layer: 

H = σ (Wχ + b), (4) 

where W ∈ Rd×dmodel is a trainable weight matrix, b is a bias term, and σ(·) is the 
activation function. To simplify notation, we do not introduce a seperate symbol for 
the normalized sequence; thus, the “input” here is implicitly assumed to be the RevIN-
transformed data. 

Node-Level Feature Extraction: Node-level features focus on individual node 
attributes and the relationships between each node and its neighboring nodes. Let hi be 
the embedding for node i. We update it by aggregating information from its neighbors 
N (i): 

hn i = σ

(
∑

j∈N (i) 

1 √|N (i)| Whj + Whi

)

(5) 

where σ(·) is the ReLU activation. 
Edge-Level Feature Extraction: By focusing on the attributes of edges or the relation-
ships between the connected nodes, edge-level feature extraction combines the features 
of two nodes, represented as: 

heij = hi · hj (6) 

where hi and hj are the embeddings of node i and node j, respectively. 

Subgraph-Level Feature Extraction: The sequence is divided into overlapping seg-
ments of approximately equal size, with each segment partially overlapping the next to 
improve model generalization and mitigate overfitting. Let Lb be the block size and O 
be the overlap size. We create 

B1, B2, . . . ,  BM = Split(H, Lb, O), (7) 

where each Bm ∈ RLb×dmodel , and M is the total number of blocks. 

This process focuses on local structures or subgraph features by aggregating the 
features of all nodes and edges within a subgraph to generate its feature representation. 
Within each block Bm, we can directly pool across time steps to form an initial subgraph 
embedding: 

h(g) 
m = AvgPool(Bm) (8) 

yielding h(g) 
m ∈ Rdmodel .
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3.3 Graph Attention and Multi-head Fusion 

The fused feature vectors are then used as input node features for GAT. 
After establishing node-level and edge-level features, we fuse them along with 

subgraph-level embeddings using a graph attention mechanism. Let hi, heij , h
(g) 
m be 

node-level, edge-level, and subgraph-level features, respectively. We compute a unified 
representation for node i: 

ui = ∑

j∈N (i)

(
αijhi + β ijheij 

+ γ 
ijh(g) 

m(i)

)
, (9) 

where m(i) indicates which subgraph node i belong to, and αij, βij, γij are attention 
weights. 

By fusing features, the multi-layer information of each node (including node-level, 
edge-level, and subgraph-level features) can be obtained. The attention weight between 
node i and its neighboring node j is expressed as: 

αij = exp
(
LeakyReLU

(
αT[W hi ‖W hj]

))
∑

k∈N (i) exp(LeakyReLU(αT [W hi ‖W hk]))
(10) 

where ‖ denotes concatenation. Bij and γij are expressed in a similar way. 

3.4 Multi-Head Mechanism 

To capture different aspects of adjacency, we apply multiple attention heads l ∈ 
{1, 2, . . . ,  heads} in parallel and then concatenate their outputs: 

u(final) 
i = ‖

{
u(l) 
i

}heads 

l=1 
(11) 

where ‖means concatenation across heads. Residual connections and feedforward layers 
are appended for deeper modeling. 

After the multi-head graph attention layers, we map u(final) 
i to the output dimention 

with a linear projection. Let hout be the final representation in Rn′×d . We apply the inverse 
of RevIN to recover the original scale: 

h(rev) 
out = hout−ζ 

η · σ + μ (12) 

yielding the predicted sequence 

P = {
p1, . . . ,  pn′

}
, pi ∈ Rd (13) 

We define the L2 loss between P and ground truth Y as: 

L = 
n′∑

i=1 
|∣∣pi − yi

∣∣|2 (14)
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4 Experiments 

4.1 Dataset 

We evaluate our model on four widely used public datasets: ETT (Electricity Trans-
former Temperature) [5], ILI (Influenza-Like Illness), Electricity [29], and Weather. 
These datasets cover diverse domains and sampling resolutions, ranging from hourly 
and sub-hourly industrial sensor data to weekly influenza statistics and high-frequency 
meteorological records. 

4.2 Baseline 

We compare MGTDGraph with several representative baselines, including Transformer-
based models (Informer [5], Autoformer [18], FEDformer [19], Robformer [27], PRReg-
Net [25], TimesNet [26]) and a recent graph-based method (ESG [24]). These baselines 
reflect SOTA designs in long-term forecasting, frequency-domain modeling, and graph 
learning. Model implementations and training settings follow the original papers for fair 
comparison. 

4.3 Implementation Details 

We employed a sliding window approach to generate data samples. The stride is set to 1 
while the window size is equal to the sum of the input length Lx and prediction lengthLp. 
The input length was fixed at Lx = 96 for all datasets. For ETTm1, Weather, and Elec-
tricity datasets,Lp ∈ {96, 192, 336, 720}, while for the ILI datasetLp ∈ {24, 36, 48, 60}. 
The first segment Lx was used as input, and the second segment ( Lp) served as the 
ground truth. Prediction errors were evaluated using MSE and MAE. 

The model is optimized using the ADAM algorithm, initialized with a learning rate 
of 0.001. Training is performed with a batch size of 64, and the attention mechanism 
comprises 8 heads, each with a hidden size of 64. Experiments were repeated three times, 
with average results reported. 

4.4 Main Results 

The effectiveness of MGTDGraph and baselines was evaluated on four LPvalues for all 
datasets. 

MSE and MAE: As  shown in Table  1, MGTDGraph consistently achieves the lowest 
MSE and MAE across most datasets and prediction horizons, especially on ETTm1, 
Weather, and Electricity. While Robformer and PRRegNet perform competitively in 
certain cases, particularly PRRegNet on Weather and Electricity, MGTDGraph remains 
the most robust overall. TimesNet shows strong performance on the Illness dataset at 
shorter horizons, suggesting some task specialization. The results also indicate that all 
models suffer increased error as the prediction horizon extends, highlighting the inherent 
difficulty of long-term forecasting.
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Table 1. Input multivariate time series prediction results (Lx = 96) 

Method 
MGTDGraph Informer Autoformer FEDformer ESG TimesNet Robformer PRRegNet 

(Ours) (2021) (2021) (2022) (2022) (2023) (2024) (2024) 

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE 

E
T
T
m
1
 96 0.317 0.351 0.571 0.672 0.475 0.505 0.379 0.419 0.406 0.430 0.338 0.375 0.379 0.398 0.351 0.374 

192 0.357 0.349 0.669 0.795 0.496 0.553 0.426 0.441 0.458 0.480 0.374 0.387 0.397 0.435 0.369 0.379 
336 0.397 0.398 0.871 1.212 0.537 0.621 0.445 0.459 0.534 0.567 0.410 0.411 0.413 0.459 0.398 0.400 
720 0.432 0.439 0.823 1.166 0.561 0.671 0.543 0.490 0.545 0.571 0.450 0.478 0.448 0.468 0.435 0.457 

W
ea
th
e 96 0.169 0.203 0.384 0.300 0.312 0.231 0.217 0.296 0.170 0.238 0.278 0.214 0.231 0.296 0.148 0.196 

192 0.217 0.267 0.544 0.598 0.343 0.278 0.276 0.336 0.226 0.295 0.256 0.286 0.268 0.301 0.218 0.267 
336 0.274 0.317 0.523 0.578 0.378 0.335 0.339 0.380 0.286 0.339 0.292 0.326 0.354 0.364 0.275 0.321 
720 0.332 0.378 0.741 1.059 0.436 0.429 0.403 0.428 0.384 0.404 0.335 0.381 0.381 0.401 0.333 0.379 

E
le
c-

96 0.191 0.287 0.368 0.274 0.312 0.197 0.193 0.308 - - 0.395 0.459 0.278 0.394 0.201 0.323 

192 0.200 0.231 0.386 0.296 0.321 0.208 0.201 0.315 - - 0.208 0.267 0.264 0.301 0.221 0.279 

336 0.201 0.278 0.394 0.300 0.328 0.213 0.214 0.329 - - 0.302 0.320 0.294 0.335 0.235 0.328 

720 0.231 0.293 0.439 0.373 0.352 0.245 0.246 0.355 - - 0.331 0.371 0.301 0.301 0.238 0.298 

Il
ln
es
s 

24 0.931 1.348 1.360 4.388 1.345 3.825 2.203 0.963 1.286 1.583 1.433 0.945 1.245 1.399 0.936 1.389 
36 0.962 1.684 1.391 4.651 1.216 3.319 2.272 0.976 1.457 1.610 1.820 1.094 1.036 1.847 0.969 1.783 
48 0.972 2.068 1.419 4.581 1.122 2.854 2.209 0.981 1.545 1.616 2.187 1.232 1.159 2.340 0.980 2.215 
60 0.973 1.634 1.432 4.583 1.232 3.227 2.545 1.061 1.651 1.685 1.655 1.583 1.210 1.841 0.993 1.674 

Number of Heads Analysis: As shown in Table 2, using 8 heads consistently yields the 
best performance across all datasets, particularly on ETTm1. Both too few and too many 
heads lead to higher errors, reflecting a trade-off between representational capacity and 
overfitting risk. Errors also increase with longer prediction horizons, aligning with the 
general difficulty of long-term forecasting. 

Efficiency Analysis: As shown in Fig. 2, MGTDGraph and TimesNet consistently 
demonstrate the best efficiency across varying prediction lengths, with lower memory 
usage and moderate computation time. In contrast, Informer and Autoformer incur steep 
computational costs as the prediction horizon increases, while Robformer and PRReg-
Net show high overhead, limiting their suitability for real-time applications. Overall, 
MGTDGraph achieves a strong balance between predictive performance and resource 
efficiency.
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Table 2. Results of the number of bulls model on different data sets 

Number of head ETTm1 Weather 

96 192 336 720 96 192 336 720 

1 MSE 0.135 0.256 0.248 0.197 0.208 0.301 0.215 0.191 

MAE 0.230 0.297 0.310 0.167 0.231 0.298 0.197 0.197 

4 MSE 0.174 0.216 0.316 0.172 0.241 0.249 0.194 0.135 

MAE 0.215 0.254 0.308 0.184 0.248 0.289 0.197 0.164 

8 MSE 0.097 0.206 0.248 0.151 0.201 0.241 0.135 0.091 

MAE 0.167 0.219 0.267 0.162 0.224 0.235 0.184 0.097 

16 MSE 0.138 0.264 0.297 0.173 0.294 0.294 0.194 0.131 

MAE 0.253 0.268 0.307 0.191 0.281 0.279 0.184 0.120 

Number of head Electricity Illness 

96 192 336 720 96 192 336 720 

1 MSE 0.341 0.197 0.168 0.192 0.132 0.167 0.120 0.197 

MAE 0.276 0.189 0.209 0.172 0.134 0.167 0.146 0.184 

4 MSE 0.297 0.206 0.219 0.167 0.128 0.204 0.101 0.164 

MAE 0.249 0.211 0.209 0.206 0.143 0.197 0.113 0.138 

8 MSE 0.207 0.192 0.134 0.137 0.098 0.134 0.097 0.125 

MAE 0.216 0.189 0.184 0.171 0.097 0.105 0.082 0.114 

16 MSE 0.308 0.206 0.187 0.198 0.130 0.176 0.130 0.164 

MAE 0.301 0.219 0.210 0.189 0.108 0.171 0.111 0.161 

Fig. 2. Efficiency analysis. The results show that MGTDGraph uses significantly less memory 
than current technology and runs faster. (a) Memory efficiency analysis. (b) Operational effi-ciency 
analysis.
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5 Conclusion 

We present MGTDGraph, a novel approach for time series forecasting that leverages 
multi-granularity feature extraction and Graph Attention Networks (GAT). By jointly 
modeling node-, edge-, and subgraph-level information, our method captures both local 
temporal patterns and global dependencies in multivariate data. Combined with sliding 
windows and a multi-head mechanism, the model consistently outperforms existing base-
lines across multiple public datasets, particularly in scenarios with strong inter-variable 
coupling. Furthermore, the approach demonstrates robust performance in handling com-
plex long-range sequences and diverse temporal structures. Future work may explore 
integrating external priors, such as spatial topology or expert domain knowledge, to 
further enhance forecasting accuracy. 
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