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Abstract

Vision-language Models (VLMs) have shown
remarkable capabilities in advancing general
artificial intelligence, yet the irrational encod-
ing of visual positions persists in inhibiting
the models’ comprehensive perception perfor-
mance across different levels of granularity.
In this work, we propose Pyramid-descent Vi-
sual Position Encoding (PyPE), a novel ap-
proach designed to enhance the perception of
visual tokens within VLMs. By assigning vi-
sual position indexes from the periphery to
the center and expanding the central recep-
tive field incrementally, PyPE addresses the
limitations of traditional raster-scan methods
and mitigates the long-term decay effects in-
duced by Rotary Position Embedding (RoPE).
Our method reduces the relative distance be-
tween interrelated visual elements and instruc-
tion tokens, promoting a more rational allo-
cation of attention weights and allowing for
a multi-granularity perception of visual ele-
ments and countering the over-reliance on an-
chor tokens. Extensive experimental evalua-
tions demonstrate that PyPE consistently im-
proves the general capabilities of VLMs across
various sizes. Code is available at https:
//github.com/SakuraTroyChen/PyPE.

1 Introduction

Large Language Models (LLMs) (Touvron et al.,
2023; Brown et al., 2020) demonstrate significant
universal capabilities that contribute to the pursuit
of general artificial intelligence. However, lan-
guage constitutes only one aspect of communica-
tion. Visual information plays a crucial role in
augmenting and enhancing our understanding of
the world. Consequently, there is a growing inter-
est in the development of Vision-language Models
(VLMs) (Chen et al., 2024c; Peng et al., 2023;
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Wang et al., 2024; Bai et al., 2023) that can pro-
cess and integrate visual modality. To effectively
leverage the powerful contextual understanding ca-
pabilities of LLMs, VLMs project visual informa-
tion to the same dimensionality as textual embed-
dings through specific projection layers (Chen et al.,
2023; Liet al., 2023b; Zhou et al., 2024), which are
then directly embedded into the text sequence to
form the input for the foundation LLMs, enabling
cross-modal alignment and instruction-following
learning using next-token prediction.

Despite their commendable progress, the typi-
cal processing of visual information does not align
with the distribution patterns of visual elements.
Since visual information is composed of fixed-
sized patches obtained through raster scanning,
patches located closer to the bottom right corner of
the image are positioned nearer to the instruction to-
kens within the sequence. Due to the long-term de-
cay from Rotary Position Embedding (RoPE) (Su
et al., 2024), visual tokens closer to the instruc-
tion tokens will be more likely to receive higher
attention weights, and vice versa. This is counter-
intuitive, as the importance of visual information is
not defined by the order of raster-scanning. Xing
et al. (2024) observe a similar phenomenon by visu-
alizing the attention information flow from instruc-
tion tokens to visual tokens in the first layer of the
decoder. Consequently, they propose Concentric
Causal Attention (CCA), which starts assigning
the position indexes of images from the peripheral
and ends in the center, to alleviate the long-term
decay in RoPE and improve causal attention fol-
lowing 2D spatial locality of images. Although
CCA is both intuitive and effective, its applicability
is constrained by the assumption that all significant
elements related to the instructions are situated at
the center of the image. This assumption inherently
results in a loss of detail, limiting its effectiveness
in capturing comprehensive information.

To further investigate the impact of raster-scan
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Figure 1: Layer-wise attention visualization of visual-to-instruction information flow. Displayed from top to bottom
are the attention heatmaps from LLaVA-1.5-7B trained with raster-scan and concentric PE, respectively. The
example is derived from LLaVA-Bench (Liu et al., 2024b) and the query is "Describe this photo in detail".

and concentric PE on the fine-grained modeling of
visual information, we extend the visualization to
all layers of the decoder. As illustrated in Figure 1,
CCA demonstrates exceptional performance in the
first layer, alleviating the long-term decay caused
by RoPE in the raster-scan approach, thereby di-
recting the model’s attention to more significant
areas. However, in the subsequent layers, both
methods largely maintain the same attention pat-
terns as observed in their respective third layers,
with changes only occurring in the final layer. A
similar phenomenon, namely "aggregation pattern”,
is observed in OPERA (Huang et al., 2024), where
both LLMs and VLMs tend to generate new tokens
by concentrating on a limited number of summary
tokens (also referred to as anchor tokens (Wang
et al., 2023)) rather than considering all preced-
ing tokens. This tendency towards partial overtrust
leads to the neglect of fine-grained image tokens,
resulting in the generation that may be hallucina-
tory and do not accurately reflect the image content.
Moreover, it has been demonstrated in OPERA that
more hallucinations are generated when more sum-
mary tokens appear in the context.

To this end, we present Pyramid-descent Vi-
sual Position Encoding (PyPE), a novel position
assignment approach for visual tokens, to alleviate
the long-term decay induced by RoPE, avoid the
"aggregation pattern” in the LLM, and ensure a
comprehensive understanding of visual contents.
PyPE reorganizes the flattened visual tokens into
the 2D shape and assigns visual position indexes
from the periphery to the center. This reduces
the relative distance between interrelated visual
elements, as well as the distance between signifi-
cant visual elements and instruction tokens, thereby
ensuring a more rational allocation of attention
weights. Furthermore, to mitigate the impact of
anchor tokens on the model’s fine-grained percep-

tion of visual elements, we draw inspiration from
Pyramid Vision Transformer (PVT) (Wang et al.,
2021): consistently combining global and local re-
ceptive fields. PyPE gradually expands the central
receptive field, i.e., the central region of the po-
sition index matrix, at predetermined intervals of
layers. Specifically, we expand the central region
of the position index matrix by a circle every cer-
tain number of layers. Such expansion weakens the
anchor tokens and enhances the model’s ability to
perceive visual elements at varying levels of granu-
larity (more cases can be found in Section 5.4).
With extensive experiments on visual question
answering and general multimodal benchmarks,
PyPE consistently improves general perception ca-
pabilities across VLMs of different sizes. In a nut-
shell, the main contributions of this work are as fol-
lows: (I) We make an in-depth analysis of how po-
sition encoding affects visual perception in VLMs.
(II) Our proposed PyPE effectively mitigates long-
term decay and the "aggregation pattern”, which
helps better perceive visual elements at different
granularities. (III) Extensive evaluations demon-
strate the superior performance of PyPE, a simple
yet effective method that applies to any VLMs.

2 Related Work

2.1 Vision-language Model

Recent advancements in VLMs have demonstrated
impressive performance in processing multi-format
information (Huang et al., 2023; Achiam et al.,
2023). VLMs are typically built upon existing
LLMs and incorporate visual information as in-
put tokens by utilizing an additional vision encoder
(e.g., CLIP) and a bridging connector (e.g., MLP).
For instance, LLaVA (Liu et al., 2024a) employs
an MLP to project visual tokens and aligns the
feature dimensions with word embeddings, while
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Figure 2: An overview of patch indexes and corresponding causal mask from raster-scan, concentric, and All-One
position encoding on an example from COCO (Lin et al., 2014).

BLIP-2 (Li et al., 2023b) utilizes a set of learn-
able query tokens to extract information in a query-
based manner. Building upon these foundational
works, MM1 (McKinzie et al., 2025) has further in-
vestigated the significance of the number of visual
tokens and image resolution, identifying them as
the most critical factors, while finding that the type
of connector has minimal impact. By effectively
connecting visual and textual modalities, VLMs
significantly enhance human-Al interaction and ex-
hibit remarkable capabilities in understanding and
generating multimodal content (Chen et al., 2024b;
Peng et al., 2023; Chen et al., 2023; Wang et al.,
2024; Hu et al., 2024; Xie et al., 2024).

2.2 Position Encoding for Transformers

Since transformer-based models contain no re-
currence (Hochreiter, 1997) and convolution (Is-
lam et al., 2020) structure, additional information
about the relative or absolute position of the to-
kens in the input sequence is required. There-
fore, the community has witnessed the develop-
ment of various position encoding methods, e.g.
sinusoidal (Vaswani, 2017), learnable (Dosovit-
skiy, 2020), relative (He et al., 2020; Shaw et al.,
2018), and conditional (Chu et al., 2021) position
encoding. Among these studies, RoPE (Su et al.,
2024) is introduced to encode absolute and rela-
tive positional information, showing superiority in
LLMs (Touvron et al., 2023; Achiam et al., 2023).
The success of LLMs has led to the continued
adoption of the effective RoPE scheme in VLMs
for the unified encoding of positional information
across sequences that incorporate multimodal fea-
tures. However, it is important to note that visual
information does not conform to the same sam-
pling paradigm as language. The raster scanning
is insufficient for modeling the spatial correlations
among different patches. Consequently, numerous
recent studies (Chu et al., 2024; Xing et al., 2024;
Lu et al., 2024) have sought to explore improved
solutions that extend RoPE to visual tasks. In this

paper, we investigate a novel multi-granularity po-
sition assignment strategy to enhance the VLM’s
comprehension of visual information and improve
the alignment between modalities.

3 Approach

3.1 Preliminaries

RoPE (Rotary Position Embedding) RoPE (Su
et al., 2024) unifies both absolute and relative po-
sitional encodings, demonstrating a certain degree
of extrapolation capability in LLMs and VLMs.
Given the m-th query and n-th key vectors with
a dimension D, denoted as q,,,, k,, € RIP!, RoPE
multiplies a bias to the key or query vector in the
complex vector space as follows:

fq(qma m) = eiqum, Jr(kn,n) = einekn
ey
where © = Diag(01,- - ,0|p|/2) is the rotary fre-
quency matrix, where 8; = b=2%/IP| and the rotary
base b = 10000. In real space, for I = |D|/2, the
rotary matrix "™ can be expressed as:

[cosmf; —sinmb; --- 0 0 ]
sinmfy; cosmb; --- 0 0
0 0 cosmb; —sinmdb,
| 0 0 sinmf; cosmb; |

2
The attention score using RoPE is calculated as
follows:

An = Re(fq(‘lm7 m)v fk(kna n))

~ Re(q ™ Pk, )
where Re(+) is the real part of a complex number
and e (m=7)O — (¢mO)Tein®  Ag the relative
distance m — n increases, the attention score A,,
correspondingly decreases due to long-term decay.
This behavior aligns with the intuitive understand-
ing that a pair of tokens separated by a significant
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Pyramid-descent Position Embedding

Figure 3: An overview of the proposed PyPE. We first reorganize the visual tokens from their vanilla flattened 1D
sequence form into the 2D format. Subsequently, we assign visual position indexes from the periphery to the center
and expand the central receptive field incrementally across the layers with an interval of ¢.

relative distance should exhibit a weaker connec-  fine-grained perception. Using identical position
tion, and vice versa. However, a similar situation  weights hampers the model’s ability to differentiate
is observed in VLMs (Xing et al., 2024), which  the significance of image tokens, while the posi-
can lead to the model lacking attention to patches  tional priors introduced by raster scanning conflict
that are relatively far from the instruction token  with general cognitive principles.

obtained through raster scanning. Similar challenges were also present in the early

development of Vision Transformer (ViT) (Doso-
vitskiy, 2020). Due to the columnar structure of
ViT, which uses coarse image patches as input, it is
difficult to apply it directly to pixel-level dense pre-
dictions such as object detection and segmentation.
This difficulty arises because its output feature map
is single-scale and low-resolution. To address these
issues, Wang et al. (2021) proposed the Pyramid Vi-

All-One Position Encoding To further explore
the impact of visual position encoding on the
model’s perception of visual elements, we propose
All-One Position Encoding: directly setting the
relative distance between all image tokens and in-
struction tokens to 1. By doing so, the relative
distances from all image tokens to the instruction
token become equal, thereby excluding the influ-
ence of relative position decay introduced by RoPE. ~ Sion Transformer (PVT). They utilize fine-grained
As a result, all patches are treated equally. image patches as input to learn high-resolution rep-

As indicated in Table 1, All-One PE performs resentations and introduce a progressive shrinking
pyramid to reduce the sequence length of the Trans-

former as the network deepens, significantly lower-
ing the computational cost. Moreover, compared to
CNNs, PVT consistently produces a global recep-
tive field, ensuring a holistic perception of visual
elements and benefiting its performance in detec-
tion and segmentation tasks.

weaker than the baselines in perception but keeps
competitive in coarse-grained perception tasks on
different sizes of models. This suggests that even
when assigning the same positional weight to all
image tokens, the VLM still possesses certain per-
ception capabilities and performs better than raster-
scan and concentric in coarse-grained situations.
This is more pronounced on LLaVA-1.5-13B be- In light of this, we propose the Pyramid-descent
cause larger models have stronger sequence model- ~ Visual Position Encoding (PyPE), a simple yet
ing and feature capturing capabilities, which corre-  effective position assignment strategy for visual
spondingly bridge the gap in fine-grained abilities  tokens in VLMSs. As shown in Figure 3, we first
between All-One PE and other methods. reorganize the visual tokens from their vanilla flat-
tened 1D sequence form into the 2D format. Sub-
sequently, we adopt a decay pattern for the corre-
Though presenting competitive coarse-grained per-  sponding position indexes of the image tokens that
ception capabilities, All-One PE still falls shortin  spread outward from the center following concen-
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Method Perception Commonsense QA Coarse-grained Perception Tasks Total
(Reasoning) Existence Count Position Color Scores
TinyLLaVA-SigLIP-Phi-2
w/ Raster-scan 1488.30 120.71 185.00 143.33 133.33 180.00 762.37
w/ Concentric 1465.25 114.29 185.00 160.00 131.67 170.00 760.96
w/ All-One 1489.46 117.14 190.00 158.33 133.33 175.00 773.80
w/ PyPE (Ours) 1500.66 115.00 190.00 150.00 138.33 180.00 773.33
LLaVA-1.5-7B
w/ Raster-scan 1510.72 135.71 190.00 158.33 128.33 175.00 787.37
w/ Concentric 1485.67 120.71 190.00 153.33 133.33 170.00 767.37
w/ All-One 1474.13 131.43 195.00 148.33 141.67 175.00 791.43
w/ PyPE (Ours) 1542.19 130.00 195.00 155.00 146.67 180.00 806.67
LLaVA-1.5-13B
w/ Raster-scan 1581.45 132.14 190.00 155.00 135.00 195.00 807.14
w/ Concentric 1607.40 128.57 195.00 180.00 141.67 185.00 830.24
w/ All-One 1608.12 130.00 195.00 170.00 146.67 190.00 831.67
w/ PyPE (Ours) 1629.41 130.71 190.00 180.00 153.33 180.00 834.04

Table 1: Performance evaluation on MME. Existence, Count, Position, and Color are coarse-grained subtasks of
MME-Perception, while Commonsense QA is a subtask of MME-Cognition. Total Scores denotes the sum of the
results from Commonsense QA and Coarse-grained tasks. The best results in each setting are in bold.

Algorithm 1 Pyramid-descent Visual Position En-

coding

INPUT: Height H, width W, descent interval ¢,
current layer index ¢, current Pp,q-

OUTPUT: Pyramid-descent position assignment
matrix P, causal mask M and P,,,, for the
next layer.

if i mod t == 0 and Pz > 1 then
Pmaax — Pmax -1

end if

Initialize P.

for p in [1, Pnas) do
Plp:H—p,p:W —p] < p

end for

Generate M according to P.

A O S

tric PE (Xing et al., 2024). Given the maximum
assignable position index Py, the position as-
signment matrix P is calculated as follows,

,P(iv.j):]% vpe [17Pmax]7
s.t. {(’LJ) |ZE [ 7H_p)7 ] € [ aW_p)}7
4)

where H and W represent the height and width of
the input image, respectively. P, qz 1s initialized
to | H/2]. This design maintains spatial continuity
in the row and column dimensions. It reduces the
average distance between significant image tokens
and instruction tokens, facilitating cross-attention

among the image tokens and cross-attention be-
tween the image tokens and instruction tokens.

Subsequently, we propose a gradual expansion
of the central receptive field to diminish the influ-
ence of anchor tokens and enhance the model’s
ability to perceive visual elements at varying levels
of granularity. Specifically, we reduce P4, every
t layers, thereby controlling the granularity of per-
ception through position encoding. When P45 is
reduced to 1, the corresponding position encoding
transforms into an All-One PE, which perceives
more coarse-grained elements. To maintain causal
attention, we adjust the attention mask M based
on each assigned position matrix P.

By introducing hierarchical position indices,
PyPE facilitates multi-granularity perception of vi-
sual elements, allowing the model to dynamically
adjust its focus to capture both broad contextual
information and fine-grained details within visual
data. This innovative approach not only aligns
more closely with human cognitive processes but
also enhances the model’s overall performance in
tasks that require both holistic and detailed percep-
tion of visual content.

4 Experiment Setup
4.1 Benchmarks

We evaluate PyPE on visual question answering
and general multimodal benchmarks, including
VQAV2 (Goyal et al., 2017), OK-VQA (Marino
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Method VQAv2 OK-VQA,, GQA  VizWizQA  TextVQA,, RealWorldQA  ScienceQA!
TinyLLaVA-SigLIP-Phi-2
w/ Raster-scan 78.93 56.71 61.07 34.30 50.88 53.99 71.24
w/ Concentric 79.08 57.35 61.15 41.08 50.77 53.59 70.45
w/ All-One 78.89 57.34 61.33 42.50 50.94 53.59 70.55
w/ PyPE (Ours) 79.22 57.48 61.65 44.45 51.31 54.12 71.59
LLaVA-1.5-7B
w/ Raster-scan 78.56 54.32 62.12 50.34 46.16 54.80 66.80
w/ Concentric 79.02 52.70 62.28 52.52 45.84 54.77 68.72
w/ All-One 79.02 52.50 62.00 55.32 45.98 54.77 68.32
w/ PyPE (Ours) 79.15 54.96 62.71 53.11 46.73 55.42 69.51
LLaVA-1.5-13B
w/ Raster-scan 79.14 57.38 63.34 53.75 48.56 55.95 71.15
w/ Concentric 79.90 53.81 63.26 56.38 48.07 55.42 70.00
w/ All-One 79.95 51.40 63.34 56.37 48.15 54.64 71.39
w/ PyPE (Ours) 79.95 55.66 63.52 58.06 48.90 56.86 71.54

Table 2: Performance evaluation on visual question answering. We utilize accuracy as the evaluation metric.
OK-VQA,, and TextVQA,, denote the validation set of OK-VQA and TextVQA, respectively. ScienceQA! denote
the image subset of ScienceQA. The best results in each setting are in bold.

et al., 2019), GQA (Hudson and Manning, 2019),
VizWizQA (Bigham et al., 2010), TextVQA (Singh
et al., 2019), RealWorldQA (X.Al, 2024), Sci-
enceQA (Lu et al., 2022), MME (Yin et al., 2024),
MMBench (Liu et al., 2025), SEED-Bench (Li
et al., 2023a), POPE (Li et al., 2023c), AI2D (Kem-
bhavi et al., 2016), MM-Vet (Yu et al., 2023),
MMMU (Yue et al., 2024), MMT-Bench (Ying
et al., 2024), and MMStar (Chen et al., 2024a).
Refer to Appendix A for more details.

4.2 Implementation Details

To demonstrate the generalizability of our proposed
method across models with different parameter
sizes, we conduct experiments using three model
architectures with 3B, 7B, and 13B parameters.
For 3B models, we follow TinyLLaVA (Zhou et al.,
2024) to use SigLIP (Zhai et al., 2023) as the vi-
sual encoder and Phi-2 (Li et al., 2023d) as the
base LLM. For 7B and 13B models, we adopt
pre-trained CLIP ViT-L/14 (3362) (Radford et al.,
2021) as visual encoder and Vicuna v1.5 (Zheng
et al., 2023) as the base LLM. Following Liu
et al. (2024a), we pretrain the models on CC-558K
dataset and finetune them on the mix-665K dataset.
All experiments are conducted on 8 NVIDIA A100
and 8 NVIDIA H20 GPUs. See Appendix B for
more training and implementation details.

5 Empirical Results and Analysis

We evaluate the visual capabilities of the mod-
els trained with the PyPE through various visual

question answering and general multimodal bench-
marks. This novel position encoding demonstrates
highly competitive performance at different scales.
Our proposed method consistently delivers top-tier
performance across most evaluation metrics, fre-
quently surpassing other baselines.

5.1 Results of Visual Question Answering
Benchmarks

To rigorously evaluate the capabilities of our mod-
els in general visual question answering tasks, we
conduct comprehensive assessments across a di-
verse array of state-of-the-art benchmarks. The
results presented in Tables 1 and 2 indicate that the
PyPE series demonstrates exceptional performance
across all benchmarks, with the three variants con-
sistently achieving or surpassing baseline perfor-
mance. In the MME benchmark, PyPE exhibits a
superior understanding of visual content at various
levels of granularity. It retains a coarse-grained per-
ception capability comparable to that of All-One
PE while outperforming both Raster-scan and Con-
centric PE in terms of fine-grained perception. On
the RealWorldQA benchmark, which assesses real-
world spatial comprehension, PyPE achieves scores
of 54.12, 55.42, and 56.86 for the 3B, 7B, and 13B
variants, respectively. These results exceed all base-
line performances and reflect an enhanced under-
standing of physical environments. VizWizQA is
a dataset comprising images captured by visually
impaired individuals using mobile phones, accom-
panied by recorded spoken questions. The images
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POPE MMBench

Method SEED! AI2D MM-Vet MMMU MMT-Bench MMStar
rand  pop adv en cn
TinyLLaVA-SigLIP-Phi-2
w/ Raster-scan 88.50 86.93 8560 67.88 45.07 6854 59.75 33.00 33.80 48.93 37.37
w/ Concentric 88.63 87.27 85.67 67.83 4322 6851 6098  33.40 33.60 48.86 38.44
w/ All-One 88.53 87.40 86.00 6648 43.11 6825 6120 32.70 33.80 48.00 38.06
w/ PyPE (Ours) 89.07 87.70 85.73 68.33 4395 68.55 61.53  35.00 33.70 48.93 38.89
LLaVA-1.5-7B
w/ Raster-scan ~ 88.33 87.13 85.63 6497 5790 66.10 55.25 30.80 31.00 47.94 35.25
w/ Concentric 87.83 8640 8543 6541 57.79 6631 5483  29.70 31.00 49.02 35.41
w/ All-One 87.30 86.57 8553 6547 5589 6641 5473 2990 30.70 48.99 36.24
w/ PyPE (Ours) 88.27 87.43 85.67 66.65 58.63 67.01 55.63 31.10 31.10 49.70 36.51
LLaVA-1.5-13B
w/ Raster-scan ~ 88.77 87.70 8590 67.74 63.17 67.65 5949  37.30 33.20 49.82 36.81
w/ Concentric 87.90 87.13 85.80 68.89 62.67 67.59 58.55 35.90 32.70 48.54 37.33
w/ All-One 87.93 87.13 8577 6799 63.06 6747 5884  36.00 32.90 49.38 37.32
w/ PyPE (Ours) 88.03 86.97 8547 69.23 6345 6850 59.59  36.60 33.20 50.40 38.71

Table 3: Evaluation on general multimodal benchmarks. We utilize accuracy as the evaluation metric. SEED!
denotes the image subset of SEED-Bench. The best results in each setting are in bold.

Method MME? OK-VQA,; TextVQA,., MMStar
TinyLLaVA-SigLIP-Phi-2
PyPE Ix 1479.53 56.99 50.13 37.31
PyPE 2x  1500.66 57.48 51.31 38.89
PyPE 3x  1470.45 57.29 50.28 38.32
PyPE 4x  1466.70 55.89 50.59 37.23
LLaVA-1.5-7B
PyPE 1x  1507.19 52.73 46.77 34.82
PyPE 2x 1542.19 54.96 46.73 36.51
PyPE 3x  1503.95 52.87 45.99 36.18
PyPE 4x  1497.18 51.76 46.20 35.79
LLaVA-1.5-13B
PyPE 1x  1608.01 50.53 48.60 35.89
PyPE 2x 1629.41 55.66 48.90 38.71
PyPE3x 1583.84 54.90 48.52 36.55
PyPE 4x  1607.63 57.42 48.09 37.07

Table 4: Analysis of the descent interval . PyPE tx
denotes using PyPE with interval £. MME" denotes
MME-Perception.

in this dataset tend to exhibit relatively low clarity,
with subjects occupying a significant portion of the
frame. Consequently, as shown in Table 2, All-One
PE demonstrates competitive performance on this
dataset, while our proposed PyPE exhibits superior
zero-shot performance on both VizWizQA and Sci-
enceQA. This improvement can be attributed to the
flexible receptive field enabled by PyPE.

5.2 Results of General Multimodal
Benchmarks

As illustrated in Table 3, the PyPE series demon-
strates exceptional performance on mainstream

general multimodal benchmarks. In the MMStar
benchmark, which is designed to assess genuine
multimodal capabilities using visually indispens-
able samples, PyPE outperforms all baseline mod-
els. On MM-Vet, which evaluates the integration
of core vision-language capabilities across 16 com-
plex multimodal tasks, the 3B model of PyPE
achieves an impressive score of 35.00, significantly
surpassing the scores of 33.00 and 33.40 obtained
by Raster-scan and Concentric PE, respectively.
In the MMT-Bench evaluation, which assesses ad-
vanced reasoning and instruction-following across
32 core meta-tasks and 162 subtasks in multimodal
understanding, PyPE markedly exceeds baseline
performance, demonstrating its ability to apply
expert knowledge and execute deliberate visual
recognition, localization, reasoning, and planning.
On MMBench, which evaluates fine-grained abil-
ities across 20 dimensions, PyPE exhibits strong
performance, matching or leading the state-of-the-
art. Additionally, we test the methods on AI2D, a
benchmark focusing on multiple-choice questions
related to scientific diagrams containing text. The
results indicate that PyPE achieves state-of-the-art
performance and demonstrates a strong comprehen-
sion of textual content within images.

5.3 Analysis of the Descent Interval

As shown in Table 4, we evaluate the performance
of different models using PyPE with varying de-
scent intervals on VQA and general multimodal
benchmarks. Across all models, a moderate de-
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Raster-scan: The image features a painting of a dog, dressed in a Renaissance-style outfit, sitting in a chair. The dog is wearing a hat
and a scarf, giving it a unique and artistic appearance. The painting captures the dog's attention, as it looks directly at the viewer. The
background of the painting includes a dining table and a chair, adding to the overall composition of the artwork. The scene is

reminiscent of a famous painting of a woman, but with the dog taking the central role in this version.

All-one: The image features a painting of a woman with a brown dog sitting next to her. The woman is wearing a hat, and the dog is positioned in

front of her, looking up at the viewer. The painting is quite detailed, capturing the woman's facial expression and the dog's attentive gaze. In the

background, there is a boat visible, adding an interesting element to the scene. The overall composition of the painting is quite engaging, with the woman

and the dog as the main subjects.

Concentric: The image features a painting of a dog, possibly a dachshund, dressed in a Renaissance-style outfit, resembling a woman. The dog is wearing

a hat and a scarf, giving it a unique and artistic appearance. The painting is set against a backdrop of a landscape, which includes a river and a mountain.

The dog's outfit and the surrounding scenery create a captivating and whimsical scene.

PyPE (ours): The image features a painting of a woman, possibly a nun, with a dog's face. The dog's face is painted in the style of a famous painting,

giving it a unique and artistic appearance. The woman is wearing a long robe, and the dog's face is positioned in the center of the painting. The background

of the painting includes a landscape with a river, adding depth and context to the scene. The combination of the woman's attire and the dog's face creates an

interesting and intriguing visual experience.

Figure 4: Illustration of the multi-granularity perception capability of PyPE with a sample from LLaVA-Bench.
The case study is based on LLaVA-1.5-7B and the query is "Describe this photo in detail”. The misunderstandings
and hallucinations of visual contents are highlighted in red. We also provide a corresponding layer-wise attention
visualization of PyPE, with the heatmap arranged from the upper left to the lower right, indicating layers 1 to 32.

scent interval PyPE 2x generally provides the best
or near-best performance, which strikes a bal-
ance between the model’s ability to handle per-
ception (MME), external knowledge integration
(OK-VQA), text comprehension (TextVQA), and
vision-critical tasks (MMStar). While the 2x inter-
val is generally optimal, there are exceptions, such
as the LLaVA-1.5-13B model performing best on
OK-VQA with a 4x interval. This indicates that
larger models might benefit from longer intervals
for specific tasks.

5.4 Qualitative Results on LLaVA-Bench

Figure 4 demonstrates a case study on how, given
identical prompts and images, other baselines mis-
perceive or inadequately process visual informa-
tion, resulting in the generation of hallucinatory
content. For instance, in the displayed example,
the baseline methods exhibit object hallucinations,
identifying nonexistent items such as "dining ta-
ble", "hat", "scarf", and "boat". In contrast, the
implementation of PyPE notably mitigates these
hallucination issues while simultaneously maintain-
ing the coherence and informativeness of the output
text. This can be attributed to the multi-scale visual
modeling capability afforded by the dynamic local

receptive fields of PyPE, in conjunction with the
stable global receptive fields. Furthermore, the vi-
sualization results of layer-wise attention indicate
that our proposed method effectively alleviates the
phenomenon of "aggregation pattern”, thereby cre-
ating a synergistic effect with the former. Refer to
Appendix C for a more in-depth analysis of anchor
tokens and Appendix E for more case studies.

6 Conclusion

In this work, we conduct an in-depth analysis of
how visual position encoding affects visual per-
ception in VLMs (Vision-lnaguage Models), par-
ticularly from the aspect of long-term decay and
the "aggregation pattern” (also known as "anchor
tokens"). Our findings indicate that conventional
visual position encoding methods are constrained
by the "aggregation pattern” derived from LLMs
(Large Language Models) and lack multi-scale per-
ceptual capabilities. To address these limitations,
we introduce Pyramid-descent Visual Position En-
coding (PyPE), a novel approach designed to en-
hance the perception of visual tokens within VLMs.
Extensive experiments across multiple benchmarks
and VLM families demonstrate the efficacy of
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PyPE in addressing these challenges and ensuring
a thorough understanding of visual content.

Limitations

Although PyPE demonstrates exceptional perfor-
mance in enhancing the overall capabilities of
Vision-language Models (VLMs), it is currently
limited to single-frame images and has not yet been
extended to video and other modalities. Future
research will focus on effectively integrating the
temporal dimension for unified position encoding
and extending PyPE to a broader range of VLMs.
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A Benchmarks

Visual Question Answering The VQAv2 dataset
is currently the largest available dataset for visual
question answering. OK-VQA includes questions
that necessitate external knowledge beyond the
multimodal inputs provided. GQA is specifically
designed to assess the reasoning capabilities of
the model. VizWizQA is composed of question-
answer pairs derived from visually impaired users.
TextVQA places a greater emphasis on evaluating
the model’s ability to comprehend text within nat-
ural scenes. RealWorldQA is a benchmark specif-
ically designed to evaluate the spatial understand-
ing capabilities of multimodal AI models in real-
world contexts. ScienceQA comprises multimodal
multiple-choice questions across a diverse range
of science topics. These datasets are strategically
selected to comprehensively evaluate our method’s
capacity to understand and reason across diverse
visual contexts and knowledge domains.
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Figure 5: Visualization of anchor tokens in baselines and PyPE.

General Multimodal Benchmarks MME mea-
sures both perception and cognition abilities on
a total of 14 subtasks. MMBench comprehen-
sively evaluates a model’s multimodal capabili-
ties in both Chinese and English contexts. SEED-
Bench focuses on assessing generative comprehen-
sion in Vision-language Models. POPE evaluates
the extent of multimodal hallucinations present in
a model. AI2D assesses a model’s ability to in-
terpret scientific diagram inputs. MM-Vet evalu-
ates the multimodal conversational abilities of a
model using GPT-4 as a benchmark. MMMU is
designed to assess multimodal models on extensive
multi-disciplinary tasks that require college-level
subject knowledge and deliberate reasoning. MMT-
Bench is a comprehensive benchmark developed to
evaluate VLMs across a wide range of multimodal
tasks that necessitate expert knowledge and deliber-

Hyperparameter Pretrain Finetune

batch size 256 128
Ir le-3 2e-5
Ir schedule cosine decay

Ir warmup ratio 0.03

weight decay 0

epoch 1
optimizer AdamW
DeepSpeed stage

Table 5: Hyperparameters of TinyLLaVA-SigLIP-Phi-
2 and LLaVA-1.5-7B/13B.

ate visual recognition, localization, reasoning, and
planning. MMstar is a premier, vision-critical mul-
timodal benchmark comprising 1,500 challenge
samples meticulously curated by human experts.
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Method RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val test
TinyLLaVA-SigLIP-Phi-2
w/ Raster-scan 31.85 15.77 44.29 31.28 18.65 40.83 56.86 56.98
w/ Concentric 30.89 15.97 42.22 31.16 19.31 38.77 59.45 58.74
w/ All-One 29.13 15.24 39.11 30.64 18.38 38.34 54.81 55.28
w/ PyPE (Ours) 31.33 16.02 45.13 31.86 19.40 42.25 59.72 59.79
LLaVA-1.5-7B
w/ Raster-scan 34.19 18.07 46.89 34.30 21.63 43.53 61.21 59.40
w/ Concentric 32.23 16.51 42.49 32.66 20.00 40.41 59.72 58.47
w/ All-One 32.99 16.46 41.26 33.28 20.73 39.83 63.07 61.90
w/ PyPE (Ours) 35.16 16.51 48.04 34.17 21.22 41.46 64.62 64.13
LLaVA-1.5-13B
w/ Raster-scan 36.86 19.29 50.01 36.12 22.37 43.59 63.66 60.96
w/ Concentric 35.87 18.54 48.17 36.07 21.94 42.65 61.66 61.07
w/ All-One 36.84 19.06 49.16 37.10 22.71 41.72 61.58 59.75
w/ PyPE (Ours) 37.81 21.82 51.88 37.14 25.74 44.73 63.16 62.59

Table 6: Performance comparison on referring expression comprehension tasks. We use CIDEr (Vedantam et al.,
2015) to evaluate the quality of the descriptions. The highest results in each setting are indicated in bold, while the

second-best results are underlined.

B Hyperparameters and More
Implementation Details

We show the training hyperparameters for both
first-stage vision-language alignment pretraining
and the second-stage visual instruction tuning in
Table 5. We use LMMs-Eval (Zhang et al., 2024)
to conduct experiments on VQA and general multi-
modal benchmarks.

C Visualization of Anchor Tokens

To further analyze the aggregating attention pat-
tern, we visualize the attention score of each patch
in the first 16 layers. As illustrated in Figure 5,
both the All-One PE and the Concentric PE ex-
hibit a relatively uniform distribution of attention
in the initial two layers. However, a significant
phenomenon of attention aggregation emerges in
the subsequent layers, where non-anchor patches
demonstrate a suppression of attention, particularly
pronounced in Concentric PE. Though Raster-scan
PE shows slight improvement, the attention in each
layer tends to be preferentially allocated to patches
that are closer to the instruction token, resulting in
a discontinuous and fragmented attention pattern.
This indicates a limitation of the Raster-scan PE in
effectively modeling patches with similar seman-
tics. In contrast, PyPE not only reduces the num-
ber of anchor tokens but also yields significantly
lower attention scores for these tokens compared

to the baselines, thereby facilitating the model’s
exploration of image details more effectively. Fur-
thermore, in each layer, the attention distribution
of the PyPE is more continuous, highlighting the
superiority of our proposed method in modeling
semantically similar information.

D Performance on Referring Expression
Comprehension

In the context of the visual localization task, we
evaluate PyPE using the RefCOCO, RefCOCO+,
and RefCOCOg datasets (Kazemzadeh et al., 2014;
Mao et al., 2016). The results, presented in Table 6,
indicate that PyPE achieves top-tier performance
among baselines. Its superior structural design
enables PyPE to effectively perceive intricate de-
tails within images, resulting in significant improve-
ments over baseline models. The performance of
PyPE underscores its potential to advance the field
of visual localization and its applicability in real-
world scenarios that require precise visual under-
standing.

E More Case Studies

We provide more examples of visual description in
Table 7. As illustrated in the table, our proposed
PyPE exhibits a reduced incidence of generating
visual hallucinations or misunderstandings. More
importantly, compared to other baseline methods,
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PyPE demonstrates a finer granularity in perceiv-
ing visual elements, thereby uncovering additional
information, such as "blueberries" in the first exam-
ple and "My joke website (funny joke push to re-
veal punchline)” in the second example. To further
analyze the model’s attention distribution across
each decoder layer, we visualize the correspond-
ing attention values for these examples. The re-
sults in Figure 6, 7, and 8 indicate that while other
baselines remain hindered by anchor tokens, PyPE
consistently mitigates this issue, facilitating a more
rational allocation of attention.
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Visual input example, Visual Description 1

User Describe this photo in detail.

Raster-scan The image displays a refrigerator filled with various food items, including milk, juice, and fruits. There are
multiple bottles of milk placed throughout the refrigerator, with some located on the top shelves and others on
the bottom shelves. In addition to the milk, there are several bottles of juice, some of which are placed on the
top shelves and others on the bottom shelves. A few carrots can be seen in the refrigerator, with some placed on
the top shelves and others on the bottom shelves. The refrigerator is well-stocked with a variety of food items,
making it a convenient place to store and access groceries.

All-One The image displays a refrigerator filled with various food items. Inside the refrigerator, there are several bottles,
including one on the left side, two in the middle, and one on the right side. There are also multiple carrots,
with some placed in the middle and others on the left side of the refrigerator. In addition to the carrots, there
are several strawberries, with some located on the left side and others on the right side of the refrigerator. A
bowl can be seen on the left side of the refrigerator, possibly containing more food items. The refrigerator is
well-stocked with a variety of fruits and vegetables, making it a healthy and diverse selection.

Concentric The image displays a refrigerator filled with various food items, including a variety of fruits and vegetables. There
are several carrots placed throughout the refrigerator, with some in the top left, middle, and bottom sections. A
few strawberries can be seen in the bottom left corner of the refrigerator. In addition to the fresh produce, there
are multiple bottles of milk and juice stored in the refrigerator. Some of these bottles are located in the top left,
middle, and bottom sections of the refrigerator. The refrigerator is well-stocked with a diverse selection of food
items, making it a convenient place to store and access groceries.

PyPE (ours)  The image displays a refrigerator filled with various food items, including several containers of berries, milk, and
other foods. There are multiple bottles of milk placed throughout the refrigerator, with some located on the top
shelves and others on the bottom shelves. In addition to the milk, there are several containers of berries, such as
strawberries and blueberries, spread across the refrigerator. The refrigerator is well-stocked with a diverse range
of food items, making it a convenient place to store and access groceries.

Visual Description 2

My Joke Webgte

[ Funny Jokel
[wd.\'mw\ F\ld\lul

User Describe this photo in detail.

Raster-scan The image features a handwritten sign with a joke written on it. The sign is placed on a table, and it appears to
be a website or a piece of paper with a humorous message. The joke is written in a foreign language, which adds
a unique touch to the sign. The sign is placed in the center of the image, drawing attention to its content.

All-One The image features a handwritten sign with a joke website written on it. The sign is placed on a white surface,
possibly a piece of paper or a wall. The joke website is written in blue ink, and the text is accompanied by a
question mark, indicating that the joke is a riddle or a puzzle. The sign is placed in the center of the image,
drawing attention to the joke website.

Concentric The image features a handwritten sign with a joke on it, likely meant to be displayed on a website. The joke is
written in a foreign language, and the sign is accompanied by a question mark, indicating that it is meant to
be a humorous or amusing statement. The sign is placed on a white background, which contrasts with the dark
blue writing.

PyPE (ours)  The image features a handwritten sign with a joke on it, likely meant to be displayed on a website. The joke is
written in blue ink, and it reads, "My joke website (funny joke push to reveal punchline)." The sign is placed
on a white background, which contrasts with the blue ink used for the joke. The handwriting style suggests a
casual and humorous tone, likely meant to entertain or amuse the viewers.

Table 7: More examples from LLaVA-Bench. The misunderstandings and hallucinations of visual contents are
highlighted in red. The descriptions that are not mentioned in baselines but are accurately represented by PyPE are
highlighted in green.
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(d) PyPE

Figure 6: Layer-wise attention visualization (left to right, up to down) of the example from Figure 4.
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(d) PyPE

Figure 7: Layer-wise attention visualization (left to right, up to down) of the first example from Table 7.
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(a) Raster-scan
(b) Concentric
(c) All-One

(d) PyPE

Figure 8: Layer-wise attention visualization (left to right, up to down) of the second example from Table 7.
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