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Abstract
We study video-to-audio (V2A) generation, a critical task for
automatically creating high-quality sound effects synchronized
with silent video. Current V2A methods face three limita-
tions: (1) inadequate textual annotations in existing datasets,
(2) over-reliance on global video features, and (3) coarse tem-
poral synchronization. To address these, we propose FoleyMas-
ter with three key innovations: 1) We introduce VGGSound
Plus dataset with 197,955 videos annotated by Qwen2-VL-7B
for fine-grained event descriptions; 2) We develop a cross-
attention semantic adapter integrating token-level text embed-
dings with global video features via prompt learning, enabling
precise alignment between visual events and sound; 3) We de-
velop a probabilistic temporal adapter that adjusts audio gen-
eration based on action prominence replacing binary synchro-
nization. Extensive experiments demonstrate that FoleyMaster
achieves state-of-the-art V2A performance across all metrics.
Demo and dataset are available.
Index Terms: Video-to-Audio Generation, Dataset Construc-
tion, Semantic and Temporal Alignment, Prompt Learning.

1. Introduction
Foley is the process of adding realistic and synchronized sound
effects to videos [1], widely used in film production. Traditional
Foley relies on professional sound artists who manipulate ob-
jects in a recording studio to create sound effects synchronized
with video actions. Although this process is artistic, it is time-
consuming and labor-intensive. In contrast, neural Foley lever-
ages artificial intelligence to generate high-quality synchro-
nized audio, significantly speeding up video production and re-
ducing manual labor. This task, known as video-to-audio (V2A)
generation, has gained increasing attention with recent advances
in generative artificial intelligence [2, 3, 4, 5, 6, 7, 8, 9, 10].

Previous studies [11, 12, 13, 14, 15] have explored various
approaches for video-to-audio generation. SpecVQGAN [12]
uses a cross-modal Transformer to auto-regressively generate
audio from video tokens, achieving the first end-to-end video-
to-audio synthesis. Im2Wav [13] generates autoregressive au-
dio tokens from CLIP [16] features, enabling image-guided
open-domain audio generation. Diff-Foley [11] improves se-
mantic and temporal synchronization by pre-training on aligned
video-audio data through contrastive learning. FoleyCrafter
[14] combines a semantic adapter and temporal controller with a
pre-trained text-to-audio model to produce high-quality, video-
synchronized sound effects. SVA [15] utilizes key frames to
understand video semantics, generating creative audio schemes
that guide text-to-audio models via natural language interfaces.

1https://foleymaster.github.io/
*Yuexian Zou is the corresponding author.

However, current V2A methods face several challenges:
1. Insufficient textual annotations: Publicly avail-

able audio-visual datasets often lack detailed semantic anno-
tations. For example, VGGSound [17] provides labels such as
“YouTube ID, start seconds, label, train/test split,” while Au-
dioSet [18] uses coarse labels as well. This lack of detailed
descriptions limits the semantic grounding of V2A models, hin-
dering their ability to generate audio that aligns accurately with
video content. For instance, a video labeled “waterfall bur-
bling” may also contain additional events, like a bird flying by.
Training with VGGSound labels would cause the loss of impor-
tant semantic information, such as the presence of the “bird”.

2. Over-reliance on global features. Most existing V2A
methods focus on global video representations, neglecting lo-
cal event details. Diff-Foley [11] trains on randomly cropped
audio-video segments, discarding fine-grained event informa-
tion and resulting in coarse-grained audio synthesis. Similarly,
FoleyCrafter [14] averages video features extracted using CLIP
[16], which reduces sensitivity to specific visual events and
weakens video-audio alignment.

3. Coarse temporal detection. Current V2A systems use
simplistic time detection mechanisms. FoleyCrafter [14], for in-
stance, applies a binary classifier (-1 or 1) to determine whether
audio should be generated at a given time frame. This rigid ap-
proach fails to capture varying levels of action prominence, lim-
iting the model’s ability to produce dynamically adjusted sound.

4. Disjoint training of semantic and temporal modules.
Existing approaches, such as FoleyCrafter, train the seman-
tic adapter and temporal adapter separately, preventing optimal
synergy between the two components. When combined, their
independently learned representations may not fully align, re-
ducing the overall quality of generated audio.

To address these deficiencies, we first extract the textual
annotations from the VGGSound dataset using a strong mul-
timodal large language model (MLLM), Qwen2-VL-7B [19],
introducing a new dataset, VGGSound Plus, to resolve the is-
sue of insufficient textual annotations. Building on this, we
proposed FoleyMaster. We train a new semantic and temporal
adapter jointly on the VGGSound Plus dataset, which enables
the model to understand the video from both local and global
perspectives, improving the synergy between the two compo-
nents. For the time detector, we replaced the binary approach
with probability values for each frame, allowing the model to
emphasize or attenuate the impact of the prominence of actions
in the video. In addition, we propose in V2A tasks the use of
MLLM-augmented prompt tuning strategy [20, 21] to improve
text notation and video-and-audio consistency for the first time.

In summary, our contributions are as follows:
• We introduce and release VGGSound Plus, a dataset anno-

tated using a powerful multimodal large language model, of-
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Figure 1: Illustration of the proposed FoleyMaster Framework.

Table 1: Example of a dataset sample

Field Example Content
Video NaDw52ggC7g 000209.mp4

Description Person typing on a keyboard while speak-
ing. Background noise includes faint electri-
cal hum and ambient sound......

fering detailed textual descriptions for each video.
• We develop a new adapter tailored to the V2A problem,

leveraging the VGGSound Plus dataset to significantly en-
hance V2A performance, improving both audio quality and
the alignment between audio and video events.

• We implement a prompt-learning approach to optimize text-
video interactions. Our experimental results demonstrate that
this technique improves the model’s ability to understand and
generate semantically accurate audio, further boosting V2A
performance.

2. Proposed Methods
2.1. Proposed VGGSound Plus Dataset

We first used Qwen2-VL-7B-Instruct to extract textual
annotations for 197,955 videos from the VGGSound dataset.
The newly annotated files, along with the original videos, to-
gether constitute the VGGSound Plus dataset. An example of
the VGGSound Plus dataset is shown in Table 1. The creation of
this dataset took approximately 144 NVIDIA A100 GPU hours.
We make this dataset publicly available online for the conve-
nience of future researchers.

2.2. Overall Model Architecture

The FoleyMaster framework, as illustrated in Figure 1, inte-
grates multimodal learning for effective video-to-audio (V2A)
generation. In training, the model processes video frames
through the CLIP encoder to extract video features, while
Qwen2-VL-7B provides textual annotations. These text embed-
dings are enhanced by a prompt learning module and fused with
video features using a cross-attention mechanism [22, 23, 24]
within the FoleyMaster Adapter, which includes both seman-
tic and temporal adapters. The final audio is generated using a
audio generator [25]for high-quality sound synthesis.

During inference, the framework follows a similar flow,
generating audio by applying the learned prompt learning mod-
ule and the adapter with denoising model to the input latent,
which is sampled from a standard Gaussian distribution, ensur-
ing high-quality and synchronized sound.

2.3. MLLM-Augmented Prompt Tuning

To enhance the effectiveness of textual prompts in the video-to-
audio (V2A) generation process, we employ a learnable prompt
learning approach. This method enables the model to dynami-
cally optimize the text prompt representations during training,
ensuring a more effective fusion of textual and visual features.
Learnable Prompt Representation: Inspired by previous
works in prompt learning, such as CoOp [20], we introduce a
learnable prompt matrix Plearn that is prepended to the token-
level features extracted by Qwen2.5-0.5B-Instruct [26].
Given a textual description T of length L, we obtain the token
feature:

THiddenStates = Qwen(T ) ∈ RL×D, (1)
where D is the hidden states dimension. We then introduce

a learnable prompt matrix:

Plearn ∈ RN×D, (2)
where N is the number of learnable prompt tokens. The

updated textual representation is:

Temb = concat(Plearn, THiddenStates) ∈ R(N+L)×D. (3)

2.4. FoleyMaster Adapter

Visual Encoder. The CLIP encoder has proven to be a powerful
tool for extracting semantic information from visual data [27].
In our method, we adopt the strategies from prior studies [14]
to obtain visual embeddings from each frame in the input video
using the CLIP image encoder. To ensure these embeddings are
compatible with the text-to-audio generator, we utilize multiple
learnable projection layers. This process can be represented as
follows:

Vemb = MLP(AvgPooling(τvis(v))).

Here, v represents the input video, τvis denotes the CLIP image
encoder, and AvgPooling refers to the average pooling of the
extracted CLIP features across frames.
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Semantic Adapter: To improve the interaction between token-
level textual prompts (local) and video features (global), we em-
ploy a Cross-Attention mechanism.

Attn = softmax
(
QKT

√
d

)
V, (4)

T ′
emb = Attn+ Temb, (5)

where Q = Temb represents the text embedding after prompt
learning, and K,V = Vemb are the visual features. T ′

emb is the
final fused feature that fully represents the semantic information
of the video.
Temporal Adapter: The temporal adapter follows the same
structure as the UNet encoder [28] in the text-to-audio genera-
tor, inspired by the design of ControlNet [29]. In our method,
we adopt the time detector pre-trained in [14]for event detec-
tion,but using its probability values as time indicators instead
of binary timestamps in order to dynamically adjusts audio gen-
eration intensity based on action prominence. Specifically, the
temporal adapter leverages the predicted timestamp condition
probability to guide the sound generation process at the desired
timestamp. It takes both the timestamp probability and the iden-
tical latent input as the original UNet, and the resulting output
is added as a residual to the output of the original UNet.

2.5. Training and Optimization

During training, the learnable prompt Plearn and the FoleyMas-
ter Adapter(both semantic and temporal adapters)are jointly op-
timized using a diffusion loss function. The objective is to min-
imize the difference between the predicted noise and the true
noise, considering both the temporal and semantic alignments:

L = Eϵ∼N (0,1),t,c

[∥∥ϵ− ϵθ(zt, t, T
′
emb, Ctime, Vemb)

∥∥] , (6)

where:
• ϵ represents the noise added to the latent variable zt at time

step t,
• ϵθ(zt, t, T

′
emb, Ctime, Vemb) is the predicted noise from the

model, based on the input latent variable zt, the timestep t,
the attention-enhanced text-video representation T ′

emb, prob-
ability time condition Ctime and video embeddings Vemb.

• N (0, 1) denotes a standard normal distribution.

3. Experiments and Results
3.1. Datasets, Metrics, and Implementation Details

Datasets We use the VGGSound Plus dataset we proposed,
an enhanced large-scale audio-visual dataset built upon VG-
GSound. VGGSound Plus comprises over 190K videos across
310 audio classes with detailed textural annotations, ensuring
strong audio-visual correspondence.
Metrics We evaluate the model performance using the CLIP
Score (CS) from [30], onset detection accuracy (Onset Acc) and
onset detection average precision (Onset AP) from [31], Incep-
tion Score (IS), Frechet Distance (FID), and Mean KL Diver-
gence (MKL) from [12]. The CLIP Score first extracts features
from multiple consecutive frames of the original video using
CLIP[16], and from the generated audio using Wav2CLIP[32].
Then, the cosine similarity between the image and audio CLIP
features is calculated, as done in previous works[30, 33]. Onset
Acc and Onset AP assess whether the generated sound includes
the correct number of onsets and whether their timings match

those in the input video[31]. IS evaluates the quality and diver-
sity of the generated audio samples, FID measures the similarity
of distributions, and MKL assesses the similarity at the paired
sample level[11].
Implementation Details In our experiments, we first sample
the training audio at a rate of 16kHz. To extract the audio fea-
tures, we compute the mel-spectrogram using the following pa-
rameters: nfft = 2048, num mels = 256, hop size = 160,
win size = 1024, fmin = 0, and fmax = 8000. These mel-
spectrograms are then passed through a pretrained variational
autoencoder [34] from the Affusion model[25] to generate the
corresponding latent representations, which are used in the sub-
sequent training of the latent diffusion model.

For training, we set the size of the prompt learning vector
N = 16, which corresponds to the number of context tokens
that are used for text-to-audio alignment. During inference, we
employ the vocoder as described in [34] to decode the generated
latent representations back into audio, ensuring the high-quality
reconstruction of the audio from the learned representations.

3.2. Main Experiment

Table 2 and table 3 present a comparison of different models on
both semantic and temporal alignment aspects. The proposed
FoleyMaster model outperforms previous methods in all key
metrics.

For semantic alignment, Table 2 shows that FoleyMaster
achieves the highest CLIP Score (CS) of 12.371, significantly
surpassing FoleyCrafter (9.821) and Diff-Foley (8.126). This
indicates that our model generates audio that is better aligned
with the visual content. Moreover, FoleyMaster obtains the best
Inception Score (IS) of 62.073, demonstrating higher diversity
and quality in the generated audio. Additionally, FoleyMaster
achieves the lowest Frechet Distance (FID) of 9.832 and Mean
KL Divergence (MKL) of 4.031, suggesting that our method
produces more natural and realistic sound effects compared to
previous approaches.

For temporal alignment, Table 3 shows that FoleyMaster
significantly improves onset detection accuracy (Onset ACC)
and onset detection average precision (Onset AP). FoleyMas-
ter attains best performance on Onset ACC (34.36) and On-
set AP(79.83), demonstrating superior synchronization between
generated audio and video events. These results highlight the
effectiveness of our probabilistic temporal adapter in capturing
finer temporal variations compared to the binary mask method
used in prior works.

Overall, FoleyMaster demonstrates state-of-the-art perfor-
mance across all evaluated metrics, achieving superior seman-
tic and temporal alignment while maintaining high-quality and
diverse audio generation.
Table 2: Comparison of Different Models in Semantic Aspect

Model CS↑ IS↑ FID↓ MKL↓

SpecVQGAN 2.703 12.665(0.416) 23.148 8.544
Diff-Foley 8.126 51.311(0.450) 13.402 6.667
FoleyCrafter 9.821 34.809(2.288) 20.008 5.969

FoleyMaster 12.371 62.073(1.765) 9.832 4.031

3.3. User Study

To better evaluate the model’s performance, we conducted a
user study employing a subjective evaluation method similar to
previous approaches[14]. We randomly selected 50 videos from
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Table 3: Comparison of Different Models in Temporal Aspect

Model Onset ACC↑ Onset AP↑

SpecVQGAN 29.52 74.82
Diff-Foley 22.97 61.72
FoleyCrafter 28.23 64.04
FoleyMaster(ours) 34.36 79.83

Table 4: User Study of Different Models

Model Semantic Temporal Quality

SpecVQGAN 28.13 37.50 20.63
Diff-Foley 18.75 26.88 16.88
FoleyCrafter 21.25 13.13 30.63
FoleyMaster(ours) 78.75 81.25 66.25

the VGGSound Plus test set and generated corresponding audio
samples using different models for a survey. The outputs were
anonymized and presented to 20 participants who were unfamil-
iar with the project. Participants were asked to choose the audio
sample that demonstrated better semantic alignment, temporal
alignment, and generation quality. The preference score was
then calculated as follows: Score = S

A
. Where S represents the

number of times a method was chosen, and A represents the
number of times the method appeared.

Table 4 presents the results of the user study. FoleyMaster
achieved the highest preference scores across all three evalua-
tion criteria.

Figure 2: Qualitative Comparison of Different Models

3.4. Qualitative Comparison

We provide the visualization of generated audio for qualitative
comparison. It can be observed from Figure 2 that FoleyMaster
generates sound at the most accurate time aligned with visual
cues, closely resembling the pattern of the ground truth audio.
In addition, we can see from the figure that FoleyMaster can
better understand the semantic information of the video, such as
the understanding of explosion sounds, and therefore can gen-
erate explosion simulation sounds from high to low frequencies
at the 2nd second.

3.5. Ablation Study

To further analyze the impact of key components in our pro-
posed FoleyMaster model, we conduct an ablation study focus-

ing on prompt learning and the probabilistic time condition.
The results are presented in Table 5 and Table 6.

Effect of Prompt Learning. To evaluate the effectiveness
of prompt learning, we compare FoleyMaster with and without
prompt learning applied to the text-video feature fusion process.
As shown in Table 5, removing prompt learning module leads
to a decrease in CLIP Score (CS) from 12.371 to 10.006, indi-
cating weaker semantic alignment between the generated audio
and the video. Additionally, the Inception Score (IS) drops from
62.073 to 53.871, suggesting reduced diversity and quality in
the generated audio. Furthermore, the Frechet Distance (FID)
increases from 9.832 to 14.315, and the Mean KL Divergence
(MKL) rises from 4.031 to 5.546, both implying a deterioration
in the naturalness and distribution alignment of the generated
audio. These results demonstrate that prompt learning signif-
icantly enhances the model’s ability to generate audio that is
semantically rich and aligned with the video content.

Effect of the Probabilistic Time Condition. We further
investigate the impact of replacing the binary time condition
with a probabilistic approach. As shown in Table 6, using the bi-
nary time condition results in an Onset Accuracy (Onset ACC)
of 32.78 and an Onset AP of 75.64. By incorporating a prob-
abilistic time detector, FoleyMaster achieves an Onset ACC of
34.36 and an Onset AP of 79.83, leading to a notable improve-
ment in temporal synchronization. This demonstrates that our
proposed method enables finer control over when audio should
be generated, effectively enhancing the model’s ability to align
sound events with visual cues.

Overall, these ablation studies confirm the effectiveness of
both prompt learning and the probabilistic time condition, high-
lighting their contributions to improving FoleyMaster’s audio
generation performance.

Table 5: Ablation Study for Prompt Learning

Methods CS↑ IS↑ FID↓ MKL↓

w/o prompt learning 10.006 53.871 14.315 5.546
with prompt learning 12.371 62.073 9.832 4.031

Table 6: Ablation Study for Probabilistic Time Condition

Methods Onset ACC↑ Onset AP↑

binary time condition 32.78 75.64
FoleyMaster 34.36 79.83

4. Conclusion
We propose FoleyMaster, a novel video-to-audio generation
framework that enhances semantic alignment, temporal syn-
chronization, and audio quality. Our contributions include (1)
VGGSound Plus, a large-scale dataset with detailed multi-
modal annotations, (2) A jointly trained semantic and tempo-
ral adapter for precise audio-video alignment, and (3) Prompt
learning to optimize text-video interactions. Experiments
demonstrate that FoleyMaster surpasses state-of-the-art meth-
ods across all evaluated metrics. Ablation studies confirm the
effectiveness of prompt learning and the probabilistic time con-
dition methods. Our approach advances neural Foley gener-
ation, and future work will focus on exploring more diverse
soundscapes and further improving model performance.
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