Recent advances in spirocyclization of indole derivatives

Supervisor: Yong Huang Reporter: Qian Wang Date: 2018-6-4

DOI:10.1039/c7cs00508c

1. Introduction

2. Spirocyclization of Indoles

3. Conclusion

4. Acknowledgement

1. Introduction

Natural alkaloids containing the C2-spirocyclicindole core structure

Rigidity
Three-dimensional geometries

Natural alkaloids containing the C3-spirocyclicindoline core structure

W. P. Unsworth, Chem. - Eur. J. 2016, 22, 2856

First successful isolation of a spiroindoline by S. L. You utilizing an Ir catalyst

S. L. You, J. Am. Chem. Soc. 2010, 132, 11418

2. Spirocyclization of Indoles

a. Spirocyclization via the 2-position of the indole skeleton

b. Spirocyclization via the 3-position of the indole skeleton

✓ Three membered spiro-cyclic compounds

✓ Five membered spiro-cyclic compounds

✓ Six/seven membered spiro-cyclic compounds

a. Spirocyclization via the 2-position of the indole skeleton

Scheme 1:

Y. Li, Org. Lett. 2016, 18, 6124

1a

Scheme 2:

Oxidant-free • Mild conditions • Simple operation • Quantitative yield • Gram-scale

K. Zhao, J. Org. Chem. 2016, 81, 11397

Proposed Mechanism

9

P. Xu, Chem. Asian J. 2016, 11, 834

b. Spirocyclization via the 3-position of the indole skeleton

✓ Three membered spiro-cyclic compounds

Proposed Mechanism

Five membered spiro-cyclic compounds

Entry ^[a]	NHC	Solvent	Time [h]	Yield ^[b] [%]	$dr^{[c]}$	<i>ee</i> ^[d] [%]
1	C1	DCM	120	nr	_	_
2	C2	DCM	120	nr	_	_
3	C3	DCM	120	nr	_	_
4	C4	DCM	120	nr	_	_
5	C5	DCM	120	36	>99:1	24
6	C6	DCM	24	47	>99:1	34
7	C7	DCM	36	33	>99:1	16
8	C6	DCE	2	51	>99:1	39
9	C6	THF	12	83	>99:1	10
10	C6	Et_2O	2	52	>99:1	30
11	C6	1,4-dioxane	36	48	>99:1	73
12	C6	MTBE	14	44	>99:1	80
13	C6	benzene	6	47	>99:1	63
14	C6	toluene	12	51	>99:1	71
15	C6	ethylbenzene	6	51	>99:1	82
16	C6	o-xylene	6	49	>99:1	84
17	C6	PhF	6	53	>99:1	60
18	C6	PhCF ₃	12	50	>99:1	67
19	C6	<i>p</i> -xylene	6	48	>99:1	79
20	C6	mesitylene	12	52	>99:1	85
21	C6	THF/mesitylene (v/v, 4:1)	12	56	>99:1	81
22	C6	THF/mesitylene (v/v, 1:1)	6	73	>99:1	47

[a] Unless otherwise noted, reactions were carried out with 1a (0.15 mmol, 1.5 equiv.), 2a (0.1 mmol), Et₃N (0.2 mmol, 2 equiv.), cat. (10 mol%) in the given solvent (0.5 mL) at 25 °C.

^[b] Isolated yield.

[c] Determined by ¹H NMR analysis.
 [d] Determined by chiral HPLC.

X. Wang, Adv. Synth. Catal. 2017, 359, 1541

	, CHO C6 (10 mo	ol%), mesi	base (X itylene	mol%) E		O J J J J J J J J J J J J J J J J J J J
Entry ^[a]	2a Base	X	Time [h]	Yield ^[b] [%]	dr ^[c]	<i>ee</i> ^[d] [%]
1	DMAP	200	48	trace	_	ND
2	DBU	200	48	trace	-	ND
3	DIPEA	200	12	_52	>99:1	_85
4	KO- <i>t</i> -Bu	200	12	51	>99:1	76
5	K_2CO_3	200	36	trace	_	ND
6	Na_2CO_3	200	36	trace	-	ND
1	LIOAC	200	36	39	>99:1	55 50
8	KOAC	200	36	38	>99:1	53
9	KSAC	200	36	4/	>99:1	67
10	$K_3PO_4 \cdot 3H_2O$	200	6	49	>99:1	75
11	DIPEA	20	12	49	>99:1	59
12	DIPEA	50	12	41	>99:1	52
13	DIPEA	100	12	52	>99:1	81

^[a] Unless otherwise noted, reactions were carried out with **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.1 mmol), base (X mol%), cat. (10 mol%) in the given solvent (0.5 mL) at 25°C.

- [b] Isolated yield.
 [c] Determined by ¹H NMR analysis.
 [d] Determined by chiral HPLC.

Entry ^[a]	Х	Temp. [°C]	Additive	Time [h]	Y [%]	Yield ^[c] [%]	$dr^{[b]}$	<i>ee</i> ^[d] [%]
1	10	r.t.	PhCOOH	36	50	33	>99:1	71
2	10	r.t.	$Sc(OTf)_3$	48	50	trace	_	_
3	10	r.t.	$Cu(OTf)_2$	48	50	trace	_	_
4	10	r.t.	$Ti(O-i-Pr)_4$	12	50	49	>99:1	81
5	10	r.t.	PPh ₃	18	50	45	>99:1	90
6	10	r.t.	3ÅMS	18	50 mg	43	>99:1	90
7	10	r.t.	5ÅMS	36	50 mg	50	>99:1	51
8	10	r.t.	13X MS	48	50 mg	46	>99:1	71
9	10	r.t.	4Å MS	72	50 mg	48	>99:1	90
10	10	rt	4Å MS	24	10 mg	52	>99:1	90
11	5	r.t.	4Å MS	72	10 mg	39	>99:1	90
12	20	r.t.	4Å MS	19	10 mg	52	>99:1	90
13	10	0	4Å MS	30	10 mg	52	>99:1	91
14	10	-10	4Å MS	39	10 mg	48	>99:1	91
15	10	-20	4Å MS	72	10 mg	31	>99:1	91

^[a] Unless otherwise noted, reactions were carried out with **1a** (0.15 mmol, 1.5 equiv.), **2a** (0.1 mmol), DIPEA (0.2 mmol), additive (Y mol%), cat. (10 mol%) in the corresponding solvent (0.5 mL) at 25 °C.

^[b] Determined by ¹H NMR analysis.

^[c] Isolated yield.

^[d] Determined by chiral HPLC.

Proposed Mechanism

✓ Six/seven membered spiro-cyclic compounds

D. Enders, Angew. Chem. Int. Ed. 2016, 55, 11110

	N N N N N N N N N N N N N N N N N N N		Ts R 2a R = H 2a' R = Me Ar	precat. 10 mol% base 1.50 equiv. solvent 0.2 M, r.t.	Ts N N Bn 3a, 3a'	N +N-Ph
N B	F ₄	BF_4	OT	BF ₄ BDPS Ph	BF ₄ Ph	BF ₄ OTBS
4	la	4b : At = Mes 4c : Ar = 2,6-Et 4d : Ar = C_6F_5 4e: Ar = 2,4,6-0	41: A ₂ C ₆ H ₃ 4g: A Cl ₃ C ₆ H ₂	Ar = Mes 4h $Ar = C_6F_5$		4i
Entry	4	Solvent	Base	Yield [%] ^[b]	d.r. ^[c]	e.r. [%] ^[d]
1	4 a	CH_2Cl_2	K ₃ PO ₄	55	_	_
2	4 b	CH_2CI_2	K_3PO_4	58	4:1	72:28
3	4 c	CH_2CI_2	K_3PO_4	56	4:1	77:23
4	4 d	CH_2CI_2	K_3PO_4	71	5:1	79:21
5	4e	CH_2CI_2	K_3PO_4	67	5:1	73:27
6	4 f	CH_2CI_2	K ₃ PO ₄	55	3:1	62:38
7	4g	CH_2CI_2	K ₃ PO ₄	68	4:1	59:41
8	4 h	CH_2CI_2	K ₃ PO ₄	63	4:1	74:26
9	4 i	CH_2CI_2	K ₃ PO ₄	n.r.	_	_
10	4 d	EtOAc	Cs ₂ CO ₃	68	4:1	93:7
11 ^[e]	4 d	EtOAc	Cs_2CO_3	58	>20:1	90:10

Thermal epimerization and loss of atropisomerism study

3. Conclusion

- This review will provide a good introduction to the field of spirocyclization reactions of indoles and will serve as a springboard for further reading.
- This review highlights the recent and significant advances in the construction of spiroindolines and spiroindoles.
- It highlights the recently used ligands and catalysts to achieve diastereoselective and enantioselective synthesis of spiroindolenines.

4. Acknowledgement

Prof. Huang

≻Mr. Chen

>All members here

Thanks for your attention!