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Evaluating the effectiveness of landscape metrics in quantifying spatial patterns
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A B S T R A C T

The effectiveness of landscape metrics in quantifying spatial patterns is fundamental to metrics

assessment. Setting 36 simulated landscapes as sample space and focusing on 23 widely used landscape

metrics, their effectiveness in quantifying the complexity of such spatial pattern components as number

of patch types, area ratio of patch types and patch aggregation level, were analyzed with the application

of the multivariate linear regression analysis method. The results showed that all the metrics were

effective in quantifying a certain component of spatial patterns, and proved that what the metrics

quantified were not a single component but the complexity of several components of spatial patterns.

The study also showed a distinct inconsistency between the performances of landscape metrics in

simulated landscapes and the real urban landscape of Shenzhen, China. It was suggested that the

inconsistency resulted from the difference of the correlation among spatial pattern components between

simulated and real landscapes. After considering the very difference, the changes of all 23 landscape

metrics against changing of number of patch types in simulated landscapes were consistent with those in

the real landscape. The phenomenon was deduced as the sign effect of spatial pattern components on

landscape metrics, which was of great significance to the proper use of landscape metrics.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the foundation of landscape ecology, the correlation
between spatial patterns and ecological processes has always been
one of the key topics of this discipline (Wu and Hobbs, 2002). To
establish this correlation, the first step is to quantify landscape
patterns (Hulshoff, 1995), which is a step that has been given
substantial attentions by landscape ecologists (Turner, 2005).
Generally speaking, there are two approaches to quantify land-
scape patterns: one is the approach of landscape metrics, mainly
applied to categorical data with spatial interruption; and the other
is the approach of spatial statistics, in which quantitative data are
adapted to spatial continuity (Wu, 2000). In the studies on
landscape patterns, the primary data mainly come from such
categorization maps as vegetation, soil, and land use/land cover
maps. Therefore, the former approach is more applicable than
the latter (Fu, 1995). Because of the rapid development of GIS and
RS technologies, and the availability of free and upgraded software
packages, such as FRAGSTATS and APACK, landscape ecologists
can easily obtain metrics for a certain landscape. Along with
the tremendous progress in landscape ecology (Fu et al., 2008),
landscape metrics have become common tools in landscape
* Corresponding author. Tel.: +86 10 62759374; fax: +86 10 62751187.
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pattern monitoring, assessment and planning since the 1990s
(Lausch and Herzog, 2002; Li and Wu, 2004; Schindler et al., 2007;
Cushman et al., 2008).

However, we still do not fully understand landscape metrics
even though their effectiveness has been a subject of studies and
disputes since the beginning of the construction of these metrics.
In recent decades, more focus has been paid to scale relations (Wu
et al., 2000, 2002; Saura and Martinez-Millan, 2001; Lausch and
Herzog, 2002; Shen et al., 2004; Wu, 2004; Uuemaa et al., 2005;
Saura and Castro, 2007), the accuracy of source data (Shao et al.,
2001; Shao and Wu, 2008), and the ecological implications of
landscape metrics (Tischendorf, 2001; Lausch and Herzog, 2002;
Bastin et al., 2002; Li and Wu, 2004; Li et al., 2005).

In essence, there are three steps in evaluating the effectiveness
of landscape metrics: Firstly, it is to evaluate the effectiveness of
landscape metrics in describing ecological processes, which is the
ultimate objective in effectiveness evaluation; secondly, it is to
evaluate the effectiveness of landscape metrics in quantifying
spatial patterns with respect to the influences of spatial scales and
data accuracy, which are important factors influencing the
effectiveness of landscape metrics; and lastly, it is to evaluate
the effectiveness of landscape metrics in quantifying spatial
patterns, which is the primary step in effectiveness evaluation.

In contrast with flourish studies focusing on the former two
steps of effectiveness evaluation, the latter is often overlooked. Only
He et al. (2000) compared the performance of four aggregation



Table 1
Varying parameters in generating simulated landscapes through SIMMAP.

Number of classes Class abundance distribution Patch aggregation

One-class-dominated (d) Systematically decreased (s) Equally dominant (e)

2 0.8, 0.2 0.6, 0.4 0.5 for both two classes Clumped (c) p = 0.55
3 0.7, 0.15 for the other two 0.5, 0.33, 0.17 0.333 for all three classes Moderately clumped (m) p = 0.3
5 0.64, 0.09 for the other four 0.34, 0.264, 0.198, 0.132, 0.066 0.2 for all five classes Randomly distributed (r) p = 0

10 0.64, 0.04 for the other nine 0.19, 0.162, 0.144, 0.126, 0.108,
0.09, 0.072, 0.054, 0.036, 0.018

0.1 for all ten classes
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metrics under varied aggregation level. Frohn and Hao (2006) also
discussed the effects of spatial aggregation on landscape metrics. Li
et al. (2004) analyzed the responses of landscape metrics on
different number of patch types, proportion of one patch type and
aggregation level, respectively. Buyantuyev and Wu (2007) reported
that the effects of thematic resolution on landscape metrics tend to
show consistent general patterns, and Castilla et al. (2009) reported
the impact of thematic resolution on the patch-mosaic model of
natural landscapes. Bailey et al. (2007a,b) analyzed the influence of
thematic resolution on metric selection for biodiversity monitoring,
and compared the change of landscape metrics in three scales of
thematic resolution. Peng et al. (2007) discussed the effects of
changing number of patch types on landscape metrics. That is to say,
all the existing studies on the effectiveness of landscape metrics in
quantifying spatial patterns are limited to the effects on landscape
metrics of changing single component of spatial patterns. While as Li
and Wu (2004) stated, it was not one component, but the complexity
of several components of spatial patterns that was quantified by
landscape metrics. Therefore, there is a dearth of the study on
evaluating the effectiveness of landscape metrics in quantifying
several components of spatial patterns at the same time.

Landscape patterns originate from spatial heterogeneity, which
can be mainly classified into five components (Li and Reynolds,
1994): (1) number of patch types; (2) proportion of each patch
type; (3) spatial arrangement of patches, namely patch aggregation
level; (4) patch shape; and (5) contrast between neighboring
patches. Generally speaking, the former three are more important
than the latter two in determining landscape patterns. Therefore,
the effectiveness of landscape metrics in quantifying spatial
patterns depends on the predictability of landscape metrics against
changing these five components, especially the former three.
Focusing on 23 widely used landscape metrics and based on
simulated landscapes generated by the SIMMAP neutral landscape
model, the aims of this study were to evaluate the effectiveness of
landscape metrics in quantifying the complexity of such spatial
pattern components as number of patch types, proportion of each
patch type, and patch aggregation level, and to learn if landscape
metrics perform in simulated landscapes as they do in real
landscapes as reported by Peng et al. (2007), so as to highlight the
factors influencing their effectiveness.

2. Methods

2.1. Simulation of neutral landscapes

Because they can systematically regenerate landscape patterns
with the same statistical properties, neutral landscape models are
widely used in landscape ecology to generate simulated land-
scapes (Shen et al., 2004; Li et al., 2008). As a widely used landscape
generator, SIMMAP was used to create simulated landscapes.
Based on a modified random cluster simulation method, SIMMAP
was developed and described in details by Saura and Martinez-
Millan (2000). In brief, the following six parameters are essential in
simulation through SIMMAP: (1) linear dimension of the pattern
(L), controlling spatial extent of simulated landscapes; (2)
minimum mapped unit (m), influencing spatial grain of simulated
landscapes; (3) neighborhood criterion (N), controlling how
patches are built from initially random binary patterns with
default 4-neigborhood criterion; (4) number of the classes (n),
determining thematic resolution of simulated landscapes; (5)
abundance of the classes (%), modifying classes abundances; and
(6) Initial probability (p), determining fragmentation degree of
obtained patterns.

In this study, landscapes were simulated by varying three
simulation parameters, that is, n, %, and p, and the remainders are
all constant, where L = 500, m = 1, and N = 4. In details, according to
parameter settings in simulating landscapes with SIMMAP by Shen
et al. (2004), the number of the classes was set to vary from 2, 3, 5
to 10, class abundance distribution varied from equally dominant
(e), one-class-dominated (d), to systematically decreased (s), and
three levels of patch aggregation were distinguished as clumped
(c), moderately clumped (m), and randomly distributed (r)
(Table 1). Therefore, 36 simulated landscapes were generated,
and the grain and extent of spatial patterns were constant in the
simulation, in order to exclude scaling effects.

2.2. Calculation of landscape metrics

The software package FRAGSTATS 3.3 was used to compute the
selected landscape metrics, in which landscape metrics were
divided into three levels: patch level, class level and landscape
level. In this study, 23 widely used landscape metrics at landscape
level were focused: number of patches (NP), patch density (PD),
edge density (ED), mean patch size (MPS), patch size standard
deviation (PSSD), patch size coefficient of variation (PSCV),
landscape shape index (LSI), largest patch index (LPI), mean patch
shape index (MSI), area-weighted mean patch shape index
(AWMSI), perimeter-area fractal dimension (PAFRAC), mean patch
fractal dimension (MPFD), area-weighted mean patch fractal
dimension (AWMPFD), contagion index (CONT), aggregation index
(AI), landscape division index (DIVISION), Shannon’s diversity
index (SHDI), Simpson’s diversity index (SIDI), modified Simpson’s
diversity index (MSIDI), Shannon’s evenness index (SHEI), Simp-
son’s evenness index (SIEI), modified Simpson’s evenness index
(MSIEI), and landscape dominance index (DI). These 23 landscape
metrics can also be grouped into four categories: area/density/edge
(NP, PD, ED, MPS, PSSD, PSCV, LSI, and LPI), shape (MSI, AWMSI,
PAFRAC, MPFD, and AWMPFD), contagion/interspersion (CONT, AI,
and DIVISION), and diversity (SHDI, SIDI, MSIDI, SHEI, SIEI, MSIEI,
and DI). The calculation and associated ecological meanings of
these landscape metrics were detailed in the related studies (Fu,
1995; Gustafson, 1998; Fu and Chen, 2000).

2.3. Regression analysis between landscape metrics and spatial

pattern components

In contrast with former unitary regression models used in
characterizing landscape metrics against changing of spatial
pattern components, the multivariate linear regression model
was applied to validate the correlation between landscape metrics
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and several spatial pattern components simultaneously with the
software package of SPSS 11.01. In details, 36 simulated landscapes
were set as sample space. With the values of landscape metrics
serviced as dependent variables, three varying parameters in
SIMMAP, i.e. number of the classes, abundance of the classes, and
initial probability, were input as independents in the regression
analysis.

Among the three parameters, the values of number of the
classes (n) and initial probability (p) can be entered into
the regression model directly, while as a series of percentages,
the parameter of ‘‘abundance of the classes’’ cannot. The
proportion of the largest class in the simulated landscape (amax)
was used to represent the variable of ‘‘abundance of classes’’ in the
regression model. When the number and sum of a set of data are
constant, the evenness of numerical values of the array depends on
the standard deviation. When the maximum of the array is also
determinate, the range of the standard deviation is determined.
The numerical change of other data except the maximum can only
result in the change of standard deviation in the limited range.
Therefore, amax can quantify the core characteristics of the spatial
pattern component of abundance of the classes.

As indicated in former study (Peng et al., 2007), many landscape
metrics exhibit a logarithmic function relation against changing
the number of patch types. Thus, the logarithm of number of the
classes (ln(n)) was also input as an independent variable in the
regression model. And two sets of independent variables (n, p, amax)
and (ln(n), p, amax), were entered into the regression model,
respectively. The most effective regression equation was selected
based on the value of the determination coefficient (R2), when the
regression equation passed the significance test of 0.05. If it failed
to pass the significance test, it meant that the metric could not
effectively quantify the corresponding components of spatial
patterns represented by the independent variables, and what it
mainly quantified were the other two of five spatial pattern
components excluded from the regression model. The standard
partial regression coefficient for each independent variable in the
regression function was also calculated, which directly quantified
the relative contribution of the corresponding independent
variable to the dependent variable with the sign indicating
negative or positive correlation. Namely, the standard partial
regression coefficient was used to reflect the proportion of
information associated with the components of spatial patterns
quantified by landscape metrics.

3. Results

All the regression equations of 23 landscape metrics have
passed the significance test of 0.05 (Table 2), which mean that all
metrics are effective in quantifying spatial patterns. As most
regression equations consist of two or three independent variables,
it can be concluded that, the information expressed by landscape
metrics is usually not on single component, but on the complexity
of several components of spatial patterns. According to the number
of independent variables in regression equations, 23 landscape
metrics fall into three groups: (1) Type I metrics respond directly to
only one independent variable, including LPI and DIVISION. Both
metrics are highly correlated with the variable of amax, which
indicate that they mainly quantify the component of proportion of
patch types; (2) Type II metrics involve in regression equations
with two independent variables, including NP, PD, ED, MPS, LSI,
AWMSI, PAFRAC, MPFD, AI, SHDI, SIDI, MSIDI, SHEI, SIEI, MSIEI, and
DI. And among these 16 metrics, five (NP, PD, MPS, PAFRAC, and
MPFD) are correlated with variables of n/ln(n) and p, four (ED, LSI,
AWMSI, and AI) with variables of p and amax, Seven (SHDI, SIDI,
MSIDI, SHEI, SIEI, MSIEI, and DI) with variables of n/ln(n) and amax,
which show the emphasis of these metrics in quantifying spatial
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pattern components; and (3) Type III metrics behave against
changing of all the three independent variables, including PSSD,
PSCV, MSI, AWMPFD, and CONT, which mean that these metrics
quantify more components of spatial patterns than the others.

For type II and III metrics, the emphasis in quantifying spatial
pattern components can be concluded through comparing the
absolute values of the standard partial regression coefficients of
different independent variables, which is shown as the following:
(1) NP, PD, MPS, and MPFD contain a little more information on
patch aggregation level than that on number of patch types, while
PAFRAC is far more affected by the latter; (2) ED, LSI, and AI focus
on patch aggregation level far more than proportion of patch
types, with AWMSI a little more; (3) SHDI is affected by number of
patch types a little more than by proportion of patch types. On the
contrary, SIDI, MSIDI and SIEI focus on the latter far more than the
former, with SHEI, MSIEI and DI a little more; and (4) PSSD pays
attention to proportion of patch types and patch aggregation level
far more than number of patch types, while MSI focuses far more
on the latter. PSCV reflects the information on proportion of
patch types far more than that on the other two components. And
CONT and AWMPFD display no significant focus on these three
components of spatial patterns.

4. Discussion

4.1. Inconsistency between changes of landscape metrics against

changing of number of patch types in simulated and real landscapes: a

paradox

To test the results found in simulated landscapes, a comparison
must be performed between the regression equations in simulated
Table 3
Consistency between the changes of landscape metrics against changing of number of

Landscape metrics The changes of landscape metrics against increasing

of number of patch typesa

In real

landscapes

In simulated

landscapes 1d

In simulated

landscapes 2e

NP % % %
PD % % %
ED % \ %
MPS & & &
PSSD & & &
PSCV � % �
LSI % \ %
LPI & \ &
MSI % & �
AWMSI & \ �
PAFRAC % & �
MPFD % & &
AWMPFD & & �
CONT � % �
AI & \ &
DIVISION % \ %
SHDI % % %
SIDI % % %
MSIDI % % %
SHEI � & �
SIEI � & �
MSIEI � & �
DI � % �

a ‘‘%’’, ‘‘&’’, ‘‘\’’, and ‘‘�’’ means monotonic increase, monotonic decrease, irrelevanc
b ‘‘U’’ and ‘‘�’’ means consistency and inconsistency, respectively, between the chan

simulated landscapes.
c ‘‘+’’, ‘‘�’’, and ‘‘/’’ means positive correlation, negative correlation, and irrelevance, re

linear regression equations.
d The changes of landscape metrics against increasing of number of patch types are

regression equations.
e The changes of landscape metrics against increasing of number of patch types are

regression equations and the correlations between these variables and number of patc
landscapes and those in real landscapes. As stated above, few
studies focused on evaluating the effectiveness of landscape
metrics in quantifying several components of spatial patterns
simultaneously, with flourish studies on the impact of thematic
resolution on landscape metrics. It was possible to compare the
results in this study with former studies dealing with thematic
resolution, with a focus on the response of landscape metrics
against changing of the number of patch types. The study
presented by Peng et al. (2007) was chosen in the comparison,
because it was the only one reporting the impact of thematic
resolution on all the 23 landscape metrics selected in this study.

According to regression equations, in simulated and real
landscapes the response of landscape metrics can both be sorted
into 3 types: monotonic decrease, monotonic increase, and
irregularity. However, for 15 of these 23 landscape metrics, their
behaviors with respect to the change of number of patch types
were not consistent in simulated and real landscapes (Table 3). For
example, in simulated landscapes three evenness indexes, SHEI,
SIEI, and MSIEI, will decrease if the number of patch types is
increased, while in real landscapes they behave irregularly. And for
metrics of ED, LSI, LPI, AWMSI, AI and DIVISION, the variable of
number of patch types is not involved in regression equations in
simulated landscapes, in contrast with their monotonic change
against the change of the very variable in real landscapes.

4.2. Difference of correlation among spatial pattern components

between simulated and real landscapes

The reason for the paradox is the difference in correlation
among spatial pattern components between simulated and real
landscapes. As we know, there is an implicit assumption of inter-
patch types in simulated and real landscapes.

The consistency between the very changes

of landscape metricsb

The sign of independent vari-

ables in regression equationc

In real landscapes

and simulated

landscapes 1

In real landscapes

and simulated

landscapes 2

n/ln(n) p amax

U U + � /
U U + � /
� U / � �
U U � + /
U U � + +
� U + � +
� U / � �
� U / / +
� � � + �
� � / � +
� � � � /
� � � + /
U � � � +
� U + + +
� U / + +
� U / / �
U U + / �
U U + / �
U U + / �
� U � / �
� U � / �
� U � / �
� U + / +

e and irregularity, respectively, against increasing of number of patch types.

ges of landscape metrics against increasing of number of patch types in real and

spectively, between landscape metrics and independent variables in multivariable

judged only by the sign of the independent variable n/ln(n) in multivariable linear

judged by the sign of all the three independent variables in multivariable linear

h types.
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independence among spatial pattern components in simulating
landscapes through neutral landscape models. Generally speaking,
this assumption is followed when contrasting two landscapes
without correlation. However, in case studies of landscape ecology,
it is unlikely to contrast irrelevant landscape patterns. The
contrasts between landscapes with the same characteristics, or
the same landscape in temporal series, are often performed.
Among these landscapes, the components of spatial patterns are
usually not independent but correlated with each other.

For example, in a real landscape, an increase in the number of
patch types often results from division of former patch types into
new ones, especially from division of patch types with a large
proportion, as it is unlikely and worthless to divide patch types
with a low proportion in common studies on landscape patterns.
Because the total area of landscape is constant, the appearance of
new types usually leads to proportion decrease of the former types,
which certainly includes the decrease of proportion of the largest
patch type. On the contrary, the decrease in the number of patch
types is mainly due to amalgamation of patch types, which results
in high proportion of newly generated patch types. Therefore, there
is a negative correlation between number of patch types and
proportion of the largest patch type.

Similarly, there is a negative correlation between number of
patch types and patch aggregation level. When the number of
patch types increases, number of patches will increase through the
division of one patch into two or more patches. As patches of other
types are usually unchanged, patch aggregation level in the whole
landscape decreases as a result. When the number of patch types
decreases, number of patches will decrease through a merging of
patches. That is to say, several dispersed patches are merged into
one patch. Considering the invariability of patches of other types, it
can be suggested that patch aggregation level will increase.

4.3. Interpretation of changes of landscape metrics against changing

of number of patch types in real landscapes through the results in

simulated landscapes

As there is a significant difference of correlation among spatial
pattern components between simulated and real landscapes, it is
not reasonable to compare the results in real and simulated
landscapes directly, and it is necessary to consider the correlation.
That is to say, when the multivariable linear regression equations
acquired in simulated landscapes are used to interpret the changes
of landscape metrics against changing of number of patch types in
real landscapes, it is determined not only by the regression
parameter of the variable of number of patch types in the
regression equation, but also by the regression parameters of the
other two variables, proportion of the largest class and patch
aggregation level, and by the correlation between the two variables
and number of patch types.

Taking SHEI for example, the evenness index behaves
irregularly in real landscapes, but should decrease in correspon-
dence with an increase of the number of patch types according to
regression parameter of the variable ln(n) in the regression
equation in simulated landscapes. However, according to the
regression equation for SHEI (Table 2), the value of the metric is
also determined by the variable of amax, which is negatively
correlated with number of patch types and has a negative
regression parameter. Thus, the value of SHEI in the regression
equation is composed of two parts, one decreasing against the
increasing of number of patch types, and another increasing, which
certainly results in the fluctuation of the value of SHEI.

Taking PSSD as another example, this index decreases against
the increasing of number of patch types in real landscapes and
shows the same behavior in simulated landscapes, as judged by the
regression parameter of the variable of ln(n) in the regression
equation. According to the regression equation for PSSD (Table 2),
there are three independent variables determining the value of the
metric, ln(n), p and amax. However, two variables p and amax have
positive regression parameters in the regression equation, and
correlate negatively with number of patch types, and the variable
ln(n) is positively correlated with number of patch types with a
negative regression parameter. Thus, all these three changeable
parts of PSSD in the regression equation will decrease if the
number of patch types increases, which is consistent with the
behavior of the metric in real landscapes.

After considering the correlations between variables of ln(n)/n,
p and amax and number of patch types, there are 18 of 23 landscape
metrics showing consistency between the changes against
changing number of patch types in simulated and real landscapes
(Table 3). Furthermore, it is noticeable that the other 5 metrics of
MSI, AWMSI, PAFRAC, MPFD, and AWMPFD all belong to the
category of shape in the categorization of landscape metrics. It is
not accidental, but due to the components of spatial patterns
quantified by these metrics. Because of the categorization of these
metrics, patch shape is their most focused component of spatial
patterns. However, the component of patch shape is not set as a
parameter in generating simulated landscapes through SIMMAP,
and thus is not used as an independent variable in regression
analysis. There is no doubt that the regression equation in
simulated landscapes cannot interpret the behavior of these
metrics in real landscapes.

4.4. Sign effect of spatial pattern components on landscape

metrics: a deduction

It can be deduced that in a temporal series of spatial patterns of
the same real landscape, the change of one spatial pattern
component often results in varying of the other four spatial
pattern components. That is to say, these five components of
spatial patterns are correlated with each other in real landscapes.
As it is not a single component but several components of spatial
patterns that together determine the values of landscape metrics,
when evaluating the monotonicity of the change of landscape
metrics against changing of a certain component of spatial
patterns, it is necessary to consider not only the correlation
between landscape metrics and the very component, but also the
correlations between landscape metrics and other components,
and the correlations between the very component and other
components as well, which is defined as sign effect of spatial
pattern components on landscape metrics.

Generally speaking, if one of these landscape metrics may
quantify five components of spatial patterns, the value of the
metric can be acquired through the following equation:

LM ¼ a0 þ a1 f 1ð pc1Þ þ a2 f 2ð pc2Þ þ a3 f 3ð pc3Þ þ a4 f 4ðpc4Þ

þ a5 f 5ðpc5Þ (1)

where LM is the value of the target landscape metric, ai (i = 0–5) is
constant, pci (i = 1–5) is independent variable characterizing the
five components of spatial patterns, and fi (i = 1–5) is the function
of corresponding independent variable.

The correlations between the target component of spatial
patterns and the five independent variables can be defined as Ci,
which is a three-value function. Namely, when there is a negative
correlation, the value of Ci is �1, while +1 and 0 are for positive
correlation and non-correlation, respectively. A two-value func-
tion, Fi is also defined to quantify the correlation between pci and
fi(pci), while +1 and �1 are for positive correlation and negative
correlation, respectively. Because there are correlations between
the five components of spatial patterns, these five independent
variables are correlated with each other. All five changing parts in
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the equation, aifi(pci) (i = 1, 2, 3, 4, 5) must be considered to discuss
the monotonicity of the change of landscape metrics against
changing of the target component of spatial patterns. Supposing
what pc1 quantifies is the target component of spatial patterns, as a
changing part of the value of target landscape metric, S(pci), the
change of aifi(pci) against changing of pc1 can be judged through the
following equation:

Sð pciÞ ¼ SignðaiÞ � Fi � Ci (2)

where Sign(ai) is a sign function, a three-value function. When ai is
positive, it returns the value of +1, while �1 and 0 are for negative
and zero, respectively.

It can be concluded that S(pci) is also a three-value function. A
value of +1 means that there is a monotonic increase of the value of
aifi(pci) against increasing of pc1, while �1 and 0 are for a
monotonic decrease and irrelevance, respectively. Therefore, the
monotonicity of the change of landscape metrics against changing
of the target component of spatial patterns depends on the
consistency among S(pci).

5. Conclusions

Using a widely used neutral landscape model SIMMAP, the
effectiveness of landscape metrics in quantifying the three spatial
pattern components, i.e. number of patch types, proportion of each
patch type, and patch aggregation level, was evaluated with the
application of multivariate linear regression modeling. The results
confirmed the previous conclusions that it was not one component,
but the complexity of several components of spatial patterns that
was quantified by most landscape metrics. Furthermore, a
comparison was conducted between the results reported in this
study and by Peng et al. (2007), focusing on the response of
landscape metrics against changing of the number of patch types.
The specious inconsistency in the comparison and associated
factors were discussed, and the changes of landscape metrics in
two studies were proved to be consistent.

As stated above, few studies before had focused on the
effectiveness of landscape metrics in quantifying spatial patterns,
and this study highlighted the necessity to analyze the very topic,
with the deduced sign effect of spatial pattern components on
landscape metrics. Recognizing the correlations among spatial
pattern components, the deduced sign effect was important to the
development, use and evaluation of landscape metrics. In other
words, when dealing with the effectiveness of landscape metrics in
quantifying spatial patterns, it was necessary to consider both
correlations between landscape metrics and spatial pattern
components, as well as correlations between the target component
and other components.

However, to confirm the universality of the results, further case
studies and theoretical analysis should be directed. Firstly, as only
three of the five spatial pattern components were considered in
this study, the other two components, i.e. patch shape and contrast
between neighboring patches, should be introduced in regression
analysis. Accordingly, because SIMMAP cannot generate simulated
landscapes with special patterns of these two components,
associated new approaches to simulating landscapes are also
necessary. Secondly, it will significantly help to understand, apply
and develop landscape metrics, to make a synthetic analysis on the
effectiveness of landscape metrics in quantifying spatial patterns
and associated ecological meanings, with consideration of the
effects of scale relations and source data accuracy on landscape
metrics. As stated above, synthetic analysis will comprise all these
three steps in evaluating the effectiveness of landscape metrics.
Thirdly, as only metrics at landscape level were introduced in this
study, the behaviors of landscape metrics at patch level and class
level should also be considered, and the comparison of the
behaviors of landscape metrics at different level would be of great
importance.
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