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Abstract: Remotely sensed nighttime lights (NTL) datasets derived from the Defense 

Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) have been 

identified as a good indicator of the urbanization process and have been widely used to 

study such demographic and economic variables as population distribution and density, 

electricity consumption, and carbon emission. However, one issue must be considered in 

the application of NTL data, i.e., saturation in the bright cores of urban centers. In this 

study, we evaluate four correction methods in China’s cities: the linear regression model 

and the cubic regression model at the regional level, and the Human Settlement Index 

(HSI) and the Vegetation Adjusted NTL Urban Index (VANUI) at a pixel level. The results 

suggest that both correction methods at the regional level improve the correlation between 

NTL data and socioeconomic variables. However, since the methods can only be used on 

saturated pixels, the correction effects are limited, as the saturated area in Chinese cities is 

rather small. HSI and VANUI increase the inter-urban variability within certain cities, 
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especially when their vegetation health and abundance is negatively correlated with NTL. 

However, the indices may induce bias when applied in a large region with a diverse natural 

environment and vegetation, and the application of HSI with a relatively high sensitivity of 

HSI to NDVI may be limited as NTL approaches maximum. Proper methods for reducing 

saturation effects should thus vary with different study areas and research purposes. 

Keywords: DMSP/OLS; saturation; correction methods; China 

 

1. Introduction 

Urbanization is associated with a booming population, socio-economic growth, and land use 

change [1,2]. The monitoring and measurement of urban dynamics are essential to understand global 

urbanization. For more than a decade, nighttime light (NTL) data collected by the Defense 

Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) have been widely used 

to study urbanization [3–7]. The OLS has a unique capacity for global mapping of artificial lighting 

present at the Earth’s surface, such as that generated by human settlements, gas flares, fires, and 

fishing boats [8]. Although NTL does not directly measure human settlements or urban land cover, it is 

identified as a good indicator of human activity [9–12]. NTL data have been archived since 1992 and 

are comprised of all available DMSP/OLS data for calendar years; each grid of the image has a digital 

number (DN), ranging from 0–63, that indicates annual average NTL intensity [13]. In recent years, 

numerous studies have been conducted on the relationship between NTL data and key socioeconomic 

variables, such as electricity consumption [14–17], gross domestic product (GDP) [18–23], carbon 

emission [24–26], economic activity [27–30], and population distribution and density [31–34]. Since 

statistical data or sufficiently accurate data on these variables is lacking in certain countries and 

regions, NTL data offer a unique way to study the social economy. Furthermore, with archival data 

from a period of more than 20 years, since 1992, and with the sensors continuing to record data, NTL 

data would benefit from time series studies of the urbanization process. 

Although DMSP/OLS NTL data consistently demonstrate a strong capacity to evaluate economic 

distribution over both global and regional scales, the data’s weakness is obvious. As the satellite data 

were initially used to produce nighttime cloud imagery, the sensor was typically operated in a high 

gain setting to enable the detection of moonlit clouds. However, with six bit quantization and a limited 

dynamic range, the recorded data are saturated in the bright cores of urban centers, in which the 

nighttime light may be brighter, but the DN values are all 63 [35]. The loss of inner-urban variation 

caused by saturation effects reduces the correlation between the detected nighttime light and economic 

activities and therefore limits the application of NTL data [36,37]. The saturation issue poses a 

significant challenge in the application of DMSP/OLS data in the assessment of urbanization processes. 

The utility of these data for urban applications could be greatly improved if the saturation of NTL data 

values were corrected or reduced [38]. In an attempt to solve the problem, several global nighttime 

light products with no saturation have been released (more information on the product can be found on 

the National Oceanic and Atmospheric Administration website [39]). However, the data are only 

available for a very limited number of years, which makes it difficult to use NTL data to study a 
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specific year or a long time series. Furthermore, several methods have been developed to correct or 

reduce NTL saturation, which can be regarded as a remedy for the released non-saturated data. The 

correction methods can be divided into two categories: those that can only be applied at the regional 

scale and those that can be used at a pixel scale. 

(1) Regional Scale 

Hara et al. [40] proposed a linear correction method for the saturated light. With the total number of 

pixels arranged in increasing order of DN values in an arbitrary area, a linear regression model is 

determined by the first pixel with DN = 63. Based on the assumption that the tendency of DN change 

in the saturated area is similar to that of the non-saturated area, Letu et al. [41] obtained a cubic 

regression equation from the DN of the non-saturated part of stable light and applied it to correct the 

saturated part.  

(2) Pixel Scale 

In 1996–1997, Letu et al. [42] developed a saturated light correction method at a pixel scale using a 

radiance calibration image. They assumed the NTL intensity to be constant in the saturated areas 

during 1996–1999 and derived a linear regression model from a comparison between the non-saturated 

part of the stable light image in 1999 and the radiance calibration image in 1996–1997 and used the 

model to correct saturation for the 1999 image. In order to apply the method, NTL must not change 

during the observation time. Thus, the method has limited applicability for correcting NTL saturation 

in numerous developing countries, such as India and China, since their NTL may change due to rapid 

urban expansion [38]. In addition, the application of this method depends on the availability of a 

radiance calibration image. By setting the gain of the detector significantly lower than its typical 

operational setting, it would be possible to observe brightness variations within urban centers. 

Therefore, Ziskin et al. [35] produced an NTL product in 2006 with no saturation by combining a 

limited set of NTL data obtained in a lower setting with the operational data acquired at high gain 

settings. The calibrated data of Ziskin’s method are accurate and of high quality. However, the 

approach is very labor- and cost-intensive. As the data acquired in low gain settings are sparse and 

only available for a very limited number of years, the method is unlikely to be used to correct the 

entire historical NTL archive [38,43]. Previous research has shown that vegetation indices or 

vegetation abundance are closely correlated in a negative manner with key urban features. Based on 

this rationale, Lu et al. [44] proposed the Human Settlement Index (HSI), combining DMSP/OLS and 

Terra MODIS Normalized Difference Vegetation Index (NDVI) data to enhance urban features in 

saturated areas, and Zhang et al. [38] developed the Vegetation Adjusted NTL Urban Index (VANUI), 

which also uses MODIS NDVI and NTL. 

In summary, the two correction models at the regional scale are based on the change in DN values 

of NTL data. The saturation effects are corrected by applying the feature of DN change in the  

non-saturated area. In contrast, the four methods at a pixel scale all utilize NTL images and other 

satellite data. In terms of data viability, HSI and VANUI can be used for a long-term series; however, 

the methods of Letu and Ziskin, in which radiance calibration images are combined with NTL data 

acquired in low gain settings, are only applicable for a limited number of years. 
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Similar to the DMSP/OLS NTL data, a new generation of nighttime light images without saturation 

effects was acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) carried on the Suomi 

National Polar-Orbiting Partnership (NPP) satellite [45]. The NPP-VIIRS is configured to collect 

visible and infrared imagery and radiometric measurements of land, atmosphere, cryosphere, and 

oceans [46,47]. In the current study, the available NPP-VIIRS global nighttime light images were 

generated using the VIIRS day/night band data collected on nights with zero moonlight during the 

following periods: 18–26 April 2012, 11–23 October 2012, and January 2013 [48]. Although the  

NPP-VIIRS data have not been filtered to remove light detections associated with fires, gas flares, 

volcanoes, or auroras, and while the background noise has not been subtracted, this data has an 

obvious advantage over DMSP/OLS: saturation is not an issue with the NPP-VIIRS data since a wider 

radiometric detection range has been used [49]. The VIIRS day/night band on Suomi NPP has a 

specified dynamic range of approximately seven orders of magnitude from 3×10−9 W·cm−2·sr−1 to 0.02 

W·cm−2·sr−1 [50]. Furthermore, the NPP-VIIRS data employ onboard calibration, which is not available 

for the DMSP-OLS data [51]. A more detailed introduction to NPP-VIIRS is provided on the National 

Aeronautics and Space Administration website [52]. 

In this paper, we focused on the problem of NTL saturation. Although several kinds of correction 

methods have been proposed, no assessment has been made of where and under what conditions a 

particular method should be applied. The purpose of this paper is to determine the best fitting model 

for reducing saturation effects. A series of statistical correlation analyses was conducted to evaluate the 

correction methods from current studies. In light of data availability, we applied four feasible methods in 

mainland China: the linear regression model and the cubic regression model available at the regional 

level, and HSI and VANUI at a pixel level. The NPP-VIIRS data were used as a means to evaluate the 

correction results. 

2. Study Area and Data 

2.1. Study Area 

In 2012, saturation occurred in 135 cities in mainland China (excluding Hong Kong, Macao, and 

Taiwan), sixty-four of which were defined as severely saturated cities in this study, whose saturated 

area was more than 30 km2, or the saturated area was equal to more than 1% of the total lit area. To 

highlight the difference between the original data and the corrected data, 62 severely saturated cities 

were included in the case study area, as shown in Table 1 (Shanghai and Xiamen were excluded; an 

explanation for this decision is presented later in this paper). 

Table 1. Sixty-two severely saturated cities in mainland China. 

No. City 

Saturated Area 

(Saturated Pixels) 

(km2) 

Ratio of 

Saturation 

(%) 

No. City 

Saturated Area 

(Saturated Pixels) 

(km2) 

Ratio of 

Saturation (%) 

1 Anshan 90 1.812 32 Lanzhou 123 2.735 

2 Baotou 173 3.201 33 Lhasa 45 3.373 

3 Bayingolin * 56 0.798 34 Liaoyang 54 1.478 

4 Beijing 1754 17.807 35 Mudanjiang 56 0.825 
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Table 1. Cont. 

No. City 

Saturated Area 

(Saturated Pixels) 

(km2) 

Ratio of 

Saturation 

(%) 

No. City 

Saturated Area 

(Saturated Pixels) 

(km2) 

Ratio of 

Saturation (%) 

5 Changchun 200 2.498 36 Nanning 94 1.169 

6 Changji** 37 0.435 37 Panjin 104 3.552 

7 Changzhou 67 1.555 38 Qingdao 85 0.804 

8 Chaoyang 48 0.506 39 Qinhuangdao 76 2.159 

9 Chengdu 90 1.022 40 Qiqihar 40 0.318 

10 Chifeng 54 0.513 41 Sanya 18 1.287 

11 Chongqing 50 0.235 42 Shenyang 420 4.466 

12 Daqing 338 3.932 43 Shenzhen 203 10.524 

13 Datong 127 1.966 44 Shijiazhuang 59 0.598 

14 Dezhou 40 0.435 45 Shuozhou 49 0.812 

15 Dongying 97 2.086 46 Songyuan 57 1.070 

16 Ordos 162 1.081 47 Suzhou 101 1.366 

17 Fushun 47 2.094 48 Taiyuan 162 3.893 

18 Guangzhou 163 2.450 49 Tangshan 61 0.582 

19 Harbin 377 1.854 50 Tianjin 487 4.453 

20 Hohhot 195 2.399 51 Tongliao 48 0.712 

21 Huludao 37 0.831 52 Urumchi 360 6.002 

22 Hulun Buir 68 0.683 53 Weihai 42 0.813 

23 Ili *** 37 0.500 54 Wuhai 20 1.316 

24 Jiayuguan 39 5.313 55 Wuzhong 53 1.485 

25 Jilin 37 0.656 56 Xining 85 5.024 

26 Jinan 337 5.129 57 Xian 104 1.881 

27 Jinchang 20 1.768 58 Yinchuan 199 4.367 

28 Jinzhou 43 0.697 59 Yingkou 107 3.145 

29 Karamay 134 3.889 60 Zhangjiakou 62 0.783 

30 Kunming 279 3.302 61 Zhengzhou 78 1.087 

31 Langfang 73 1.164 62 Zhuhai 19 5.013 
* Bayingolin Mongol Autonomous Prefecture; ** Changji Hui Autonomous Prefecture; *** Ili Kazakh 

Autonomous Prefecture. 

2.2. Data Collection 

The linear model and the cubic regression model act on the regions with DN = 63 and leave the 

other regions unchanged. To increase the difference between the original data and the corrected data, 

the NTL image from 2012 was used since the amount of light in China has increased rapidly in recent 

years [20], and the image from 2012 has a larger saturated area than those from other years. Statistical 

data on population, GDP, built-up area, and electric power consumption in the selected 62 cities were 

collected to evaluate the correction results. 

HSI and VANUI correction methods can be used at a pixel level. In order to evaluate their 

correction results, we derived grid maps from various sources: population and GDP distribution in 

2003, global radiance calibrated NTL data (with no sensor saturation) in 2003 and 2006, and the  
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NPP-VIIRS image in 2012. Thus, NTL images from 2003, 2006, and 2012 were all used. All data sets 

used and their detailed descriptions are listed in Table 2. 

Table 2. Data sets used in research. 

Data Set Period Data Source Description 

Population and  

GDP grid maps 
2003 

China Data Sharing Infrastructure 

of Earth System Science 

Spatial resolution of 1000 m, produced 

from land use data and statistical data 

DMSP/OLS NTL 

(radiance calibrated) 
2003, 2006 

NOAA-National Geophysical Data 

Center 
Spatial resolution of 1000 m 

DMSP/OLS NTL  

(stable light) 

2003, 

2006, 2012 

NOAA-National Geophysical Data 

Center 
Spatial resolution of 1000 m 

MODIS NDVI 
2003, 

2006, 2012 
NASA-LAADS Web 

Spatial resolution of 1000 m, 8-day 

composite 

Statistical data 2012 
China Economic and Social 

Development Statistical Database 

Population, GDP, Built-up area, Electric 

power consumption 

Administrative boundary 2012 
China National Fundamental 

Geographic Information System 
City level 

NPP-VIIRS NTL 2012 
NOAA-National Geophysical Data 

Center 
Spatial resolution of 500 m 

3. Methods 

3.1. Data Processing 

As mentioned above, the NPP-VIIRS image is a preliminary product with background noise 

unassociated with economic activities, such as fires and volcanoes. Shi et al. [49] used DMSP/OLS 

data to remove data noise and to improve the accuracy and reliability of NPP-VIIRS data. First, the 

pixels with DN > 0 in the DMSP/OLS image from 2012 were taken as a mask to extract NPP-VIIRS 

data; two thresholds were then used to correct the outliers in the extracted NPP-VIIRS data, i.e., the 

pixels with negative DN values were assigned a 0, and pixels greater than 235.13 were smoothed by 

their eight neighbors. The upper threshold of 235.13 was set as the highest DN value of the three most 

developed cities in China: Beijing, Shanghai, and Guangzhou. Unlike Shi et al. [49], we took the mean 

value of the maximum DN in each of the three cities as the upper threshold since we thought that their 

development should be similar and mean DN could better reduce data bias. All the grid maps were 

reprojected to a Lambert azimuthal equal area projection with a spatial resolution of 1000 m. 

3.2. Implementing Correction Methods 

Ziskin’s method [35] and Letu’s method [42], combining radiance calibration images and NTL data 

acquired in low gain settings, were not considered in this study because of their limited applicability in 

correcting NTL saturation. The other four methods discussed above were implemented and evaluated 

in this article. The regression models available only at the regional scale were applied for data from 

2012 within administrative units. Additionally, the pixel-based correction methods were applied for 

data from 2003, 2006, and 2012. 
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(1) Regional Scale 

The general idea of Hara’s linear regression model for correcting saturation is presented in 

Figure 1 [40]. The X-axis shows the accumulated number of pixels (PNX), while the Y-axis shows the 

arbitrary DN value (DNY). 

Figure 1. The concept of the linear regression model. 

 

The angle θ of the right triangle is calculated using Equation (1), Equation (2) is used to calculate 

the corrected DN from the accumulated number of pixels, and Equation (3) is used to determine the 

total value of calibrated DN. 

tan θ  = 
PNA

63
 (1)

DNY = 
PNX

tan θ
 (2)

TDN = NDN + DNY

T

Y=A

 (3)

where A and T represent the lower and upper limit of the total number of pixels in the saturated area, 

respectively. Meanwhile, TDN refers to the total value of calibrated DN, and NDN is the sum of DN in 

the non-saturated area. 

Similar to Hara’s method, the cubic regression model (Figure 2) is also based on the tendency of 

DN change in non-saturated areas to correct saturation effects. 

DNY = aPNX
3  + bPNX

2  + cPNX + d (4)

where a, b, c, and d are the coefficients obtained by a four-dimensional simultaneous equation based 

on the least-squares method [41]. The explanation of the other variables is the same as that  

for Equations (1)–(3). 
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Figure 2. The concept of the cubic regression model. 

 

The two correction methods were applied in the 62 cities, and the accuracy was verified by using 

statistical data pertaining to population, GDP, built-up area, and electric power consumption. 

(2) Pixel Scale 

The HSI method and the VANUI method both use contemporaneous NDVI to correct DN 

saturation based on the principle that key urban features are inversely correlated with vegetation health 

and abundance. 

NDVIMAX = MAX [NDVI1, NDVI2, …, NDVIm] (5)

HSI = 
(1 – NDVIMAX) + NTLN

1 – NTLN  + NDVIMAX + NDVIMAX × NTLN
 (6)

NDVIMEAN = AVERAGE [NDVI1, NDVI2, …, NDVIm] (7)

VANUI = 1 – NDVIMEAN  × NTL (8)

where NDVIMAX is the annual maximum NDVI, NDVI1, NDVI2, …, NDVIm are the multitemporal 

NDVI images, NTLN  represents the normalized value of DN, NDVIMEAN  is the average value of 

annual NDVI, and NTL is the DMSP/OLS stable light data. 

The methods were performed in 2003, 2006, and 2012. To reduce the effects of dim lighting in NTL 

images, pixels with DN < 12 were not considered in the analysis [53]. Further, pixels with negative 

values were removed from NDVIMAX and NDVIMEAN images to exclude water bodies. In general, a 

higher level of urbanization should result in a lower NDVI and a higher NTL, thus generating higher 

values in HSI and VANUI. However, the coarse spatial resolution of NTL and NDVI, as well as data 

bias, could cause outliers in the HSI and VANUI images. Therefore, a threshold method was used to 

remove noise, which is similar to that used to correct the VIIRS-NPP image; i.e., the average of the 

highest HSI and VANUI in Beijing, Shanghai, and Guangzhou was used as the upper limit, so each 

pixel with larger values than the upper limit would be given a new value from their eight neighbors. 
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4. Results 

4.1. Saturation Correction at Regional Scale 

The curves of NTL DN change in most cities present a concave shape, such as those of Beijing 

(Figure 3a) and Xian (Figure 3b), whereas cities like Suzhou (Figure 3c) and Zhuhai (Figure 3d) have 

convex shaped curves. These two types of curves fit the linear regression model and the cubic 

regression model. However, the cubic regression models in Shanghai (Figure 3e) and Xiamen (Figure 3f) 

imply an incorrect decrease in the curves of NTL DN change. Therefore, the cubic regression model 

cannot be applied in Shanghai or Xiamen, and these two cities were excluded from analysis. 

Figure 3. The correction results of the linear regression model and the cubic regression 

model in Beijing (a), Xian (b), Suzhou (c), Zhuhai (d), Shanghai (e), and Xiamen (f).  
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Figure 3. Cont. 

 
──── Original data – – – – Linear correction ……… Cubic correction 

4.2. Saturation Correction at a Pixel Scale 

The correction methods of HSI and VANUI were performed in the regions with DMSP/OLS 

DN ≥ 12 and NDVI ≥ 0 in 2003, 2006, and 2012. Figure 4 shows the correction results in part of the 

Pearl River Delta. It is obvious that both HSI and VANUI captured finer details in the bright 

urban centers. 

Figure 4. The spatial pattern of DMSP/OLS data, HSI and VANUI in part of the Pearl 

River Delta in 2003, 2006 and 2012. 
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4.3. The Comparison between the Linear Correction Model and the Cubic Correction Model 

To evaluate the correction results of the linear correction model and the cubic correction model, the 

cumulative DN of the original NTL data and the corrected data were calculated in the 62 cities and 

then taken into the Pearson correlation with four socioeconomic variables: urban construction 

area (km2), GDP (109 RMB), population (107), and electricity consumption (1011 kilowatt hour) 

(because of the lack of data, only 47 cities were taken into the Pearson correlation with regards to 

electricity consumption). 

As shown in Table 3, both the original cumulative DN and the corrected cumulative DN are 

correlated with the socioeconomic variables (significant at 0.01 level). Linear regression was then 

applied between cumulative DN and the socioeconomic variables, as shown in Figure 5. The results of 

the Pearson correlation and the linear regression both imply that the NTL data are good indicators for 

socioeconomic activity. 

Table 3. Pearson correlation coefficients between cumulative digital number (DN) and 

socioeconomic variables. 

Variables GDP Population 
Urban Construction 

Area 
Electricity 

Consumption 
Number of cities 62 62 62 47 
Original data 0.829 ** 0.799 ** 0.794 ** 0.781 ** 
Linear correction 0.837 ** 0.802 ** 0.804 ** 0.783 ** 
Cubic correction 0.838 ** 0.801 ** 0.804 ** 0.784 ** 

** Correlation is significant at the 0.01 level (2-tailed). 

Figure 5. Linear relationship between socioeconomic variables and the accumulative DN 

of original data and corrected data of linear and cubic models. 
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Figure 5. Cont. 

 

 
● Original data ◆ Linear regression model ▲ Cubic regression model 

On the other hand, the results of the Pearson correlation and linear regression indicate that the two 

correction methods did not obviously improve the correlation between NTL and economic activities. 

This may be because the correction methods were only performed on the pixels with original DN = 63, 

while China is a developing country with a small saturated area. To test this hypothesis, we further 

analyzed the relationship between the change of NTL data after correction and the area of saturation in 

the 62 cities. Figure 6 shows that the correction effects tend to decrease with decreasing saturated area. 

Figure 6. The saturation effect and correction effect in the 62 cities. 
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4.4. The Comparison between HSI and VANUI 

Two assessments were used to evaluate the ability of HSI and VANUI to reduce saturation. First, 

the original NTL data and corrected data of HSI and VANUI were taken into the Pearson correlation at 

a pixel level in the regions with DMSP/OLS DN ≥ 12 and NDVI ≥ 0 in mainland China with grid 

maps of population and GDP in 2003, radiance calibrated NTL data in 2003 and 2006, and VIIRS-NPP 

data in 2012. The results (significant at the 0.01 level) in Table 4 demonstrate that the correlation 

coefficients of the original NTL data are larger than those of HSI and smaller than those of VANUI, 

which indicates that VANUI enhances the correlation in the national area and HSI reduces the 

application of NTL. 

Table 4. Pearson correlation coefficients at a pixel level. 

Variables 
Population 

(2003) 
GDP 

(2003) 

Radiance Calibrated Data VIIRS-NPP 
(2012) (2003) (2006) 

Original data 0.395 ** 0.476 ** 0.600 ** 0.691 ** 0.598 ** 
HSI 0.364 ** 0.393 ** 0.511 ** 0.598 ** 0.574 ** 
VANUI 0.438 ** 0.485 ** 0.617 ** 0.710 ** 0.635 ** 

** Correlation is significant at the 0.01 level (2-tailed). 

Second, the Pearson correlation coefficients in each of the 62 cities were calculated to analyze the 

correction results at the city level. To represent how well the correction methods reduced NTL 

saturation, the average (AVG) and standard deviation (STDEV) of the Pearson correlation coefficients 

of the original data, HSI, and VANUI in 62 cities were calculated. Table 5 shows that except for the 

average of HSI with radiance calibrated data in 2003 and 2006, most average values of HSI and 

VANUI are higher than those of the original data. Additionally, the correction results of VANUI are 

more stable than those of HSI, since the standard deviations of VANUI are smaller. 

Table 5. The average and standard deviation of the Pearson correlation coefficients in 62 

cities at a pixel level. 

Variables 
Population 

(2003) 
GDP 

(2003) 

Radiance Calibrated Data VIIRS-NPP 
(2012) (2003) (2006) 

AVG 

Original data 0.522 0.547 0.729 0.779 0.572 

HSI 0.591 0.608 0.710 0.758 0.653 

VANUI 0.577 0.597 0.752 0.806 0.629 

STDEV 
Original data 0.121 0.136 0.094 0.075 0.092 

HSI 0.189 0.142 0.136 0.158 0.148 
VANUI 0.188 0.063 0.048 0.060 0.065 

To evaluate the methods used with the former linear regression model and cubic regression model, 

the cumulative DN of HSI and VANUI were calculated in 62 cities. The correlation results in Table 6 

(significant at the 0.01 level) show that HSI and VANUI do not have higher coefficients than the 

original data in some variables. HSI only improves the correlation coefficients of electricity 

consumption, and the coefficients of VANUI are higher than those of the original NTL data, with the 

exception of population. 
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Table 6. Pearson correlation coefficients at city level. 

Variables GDP Population Urban Construction Area 
Electricity 

Consumption 

Number of cities 62 62 62 47 
Original data 0.829 ** 0.799 ** 0.794 ** 0.781 ** 

HSI 0.748 ** 0.563 ** 0.788 ** 0.788 ** 
VANUI 0.845 ** 0.678 ** 0.830 ** 0.830 ** 

** Correlation is significant at the 0.01 level (2-tailed). 

5. Discussion 

Since the HSI and VANUI did not perform well in some cases, we further analyzed the factors that 

might contribute to errors. First, we examined the major assumption of the two indices that key urban 

features and vegetation are inversely correlated. In a city where vegetation health and abundance can 

be considered constant, the indices may be helpful in capturing details in bright urban cores. However, 

in a city of diverse natural environments and vegetation, the inconstant environmental background 

could influence the accuracy of HSI and VANUI. To analyze the relationship between NTL data and 

NDVI, we calculated the mean of the annual maximum NDVI of each NTL DN in the 62 cities (we 

consider the annual maximum NDVI and the annual average NDVI are the same in this analysis, since 

the correlation coefficient between them is larger than 0.9 at a significant level of 0.01). The results 

show that the assumption is valid in most eastern and central cities, such as Tianjin in 2012 

(Figure 7a), but invalid in some western cities, like Wuzhong in 2012 (Figure 7b). A further 

comparison between these two kinds of cities reveals that most eastern and central cities are located on 

the vegetated region, where the change of NDVI in urban areas is very different from non-urbanized 

areas; however, the western cities have some desert land, which makes the change of NDVI caused by 

urbanization difficult to recognize. 

Figure 7. Linear relationship between NTL and NDVI in (a) Tianjin and (b) Wuzhong 

in 2012. 

 

Next, we explored if the correlation between NTL DN and NDVI would influence the correction 

results of HSI and VANUI. The form of a ratio (PH
+  and PV

+ ) was used to measure correction results. 
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PH
+  = 

PO

PH
 (9)

PV
+  = 

PO

PV
 (10)

where PO, PH and PV are the Pearson correlation coefficients of the original data and the corrected data 

of HSI and VANUI, respectively. 

It is obvious that a ratio higher than 1.0 indicates that saturation was reduced. Therefore, the 62 

cities were divided into two groups: the saturation-corrected (SC) with ratio>1.0 and the  

saturation-remaining (SR) with ratio ≤ 1.0. Table 7 shows the average of the correlation coefficients of 

each group and implies that cities whose saturation is corrected by HSI and VANUI tend to have 

higher correlation coefficients. Figure 8 shows an example from 2012. The number of cities in Group 

SC (on the right side of PH
+ = 1 and PV

+ = 1 lines) is larger than that of Group SR (on the left side  

of PH
+ = 1 and PV

+ = 1 lines). Additionally, most cities in Group SR have smaller correlation 

coefficients (R2) than Group SC. 

Table 7. Average correlation coefficients between NTL and NDVI of Group SC and 

Group SR. 

Variables 
Population GDP Radiance Calibrated Data VIIRS-NPP 

(2003) (2003) (2003) (2006) (2012) 

HSI 
SC 0.605 0.611 0.646 0.646 0.664 

SR 0.314 0.291 0.451 0.433 0.055 

VANUI 
SC 0.602 0.584 0.608 0.592 0.661 

SR 0.114 0.026 0.383 0.286 0.306 

Figure 8. Scatterplots of correlation coefficients between NTL DN and NDVI and 

correction effect of HSI and VANUI in 2012. 

  
────Average R2 of SC   -------Average R2 of SR 

Combining NTL DN and NDVI, HSI and VANUI are also affected by these two factors. We 

calculated HSI and VANUI with an interval of 10 DN (e.g., 13, 23, 33, etc.) and 0.1 NDVI (e.g., 0, 

0.1, 0.2, etc.) to show the variation trend. As illustrated in Figure 9, NDVI has a larger impact on HSI 

and VANUI when NTL DN is higher. When NTL DN is constant, HSI decreases sharply with NDVI, 
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and VANUI decreases steadily. Therefore, in urban areas, which have relatively high NTL DN and 

low NDVI, HSI is more sensitive to NDVI or NTL DN than VANUI. Also, HSI is unavailable when 

NTL is 63 and NDVI is 0. 

Figure 9. The change of HSI and VANUI with NDVI and NTL DN. 

  

6. Conclusion 

The correction methods at the regional level, i.e., the linear regression model and the cubic 

regression model, are established based on the tendency of DN change in unsaturated areas; therefore, 

the methods can be used to correct historical NTL without additional data. We applied the two 

methods in 62 cities in China. The results demonstrate that both methods reduce saturation effects and 

improve the correlation between NTL data and socioeconomic variables. However, since the methods 

only perform in saturated areas, which are small in China, the correction effects are limited. The 

methods may perform better in developed countries, where more pixels are DN = 63. 

Based on the principle that vegetation and urban features are inversely correlated, the correction 

methods at a pixel level, HSI and VANUI, combine NTL with contemporaneous NDVI to correct 

saturation effects in bright urban cores. Our analysis shows that the correction results vary with study 

scale and study area. At the country level, VANUI is useful in reducing saturation. In contrast, HSI 

reduces the correlation between NTL data and economic variables. At the city level, the correction 

results of HSI are much improved, and the correction effects of VANUI are more stable than that of 

HSI. Then, we analyzed two factors that may impact the correction results of HSI and VANUI. First, 

NDVI is helpful in increasing inter-urban variability within certain cities, where the vegetation health 

and abundance can be considered constant. However, in a large region with diverse natural 

environments and vegetation, the HSI and VANUI may result in errors. Second, HSI is sensitive to 

changes in NDVI when NTL DN is high, which is usually found in urban areas, so this may limit the 

application of HSI. Therefore, the correction method needs to be selected according to the study area 

and the purpose of research. 
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