Heavy Metal Sequestration Using Functionalized Monolayers on Mesoporous Supports

Advisor: Prof. Zhao Reporter: Lin Zhou

REPORTS

Functionalized Monolayers on Ordered Mesoporous Supports

X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu,* K. M. Kemner

Mesoporous silica materials containing functionalized organic monolayers have been synthesized. Solid-state nuclear magnetic resonance suggests that a cross-linked monolayer of mercaptopropylsilane was covalently bound to mesoporous silica and closely packed on the surface. The relative surface coverage of the monolayers can be systematically varied up to 76 percent. These materials are extremely efficient in removing mercury and other heavy metals from both aqueous and nonaqueous waste streams, with distribution coefficients up to 340,000. The stability of these materials and the potential to regenerate and reuse them have also been demonstrated. The surface modification scheme reported here enables rational design of the surface properties of tailored porous materials and may lead to the synthesis of more sophisticated functionalized composites for environmental and industrial applications.

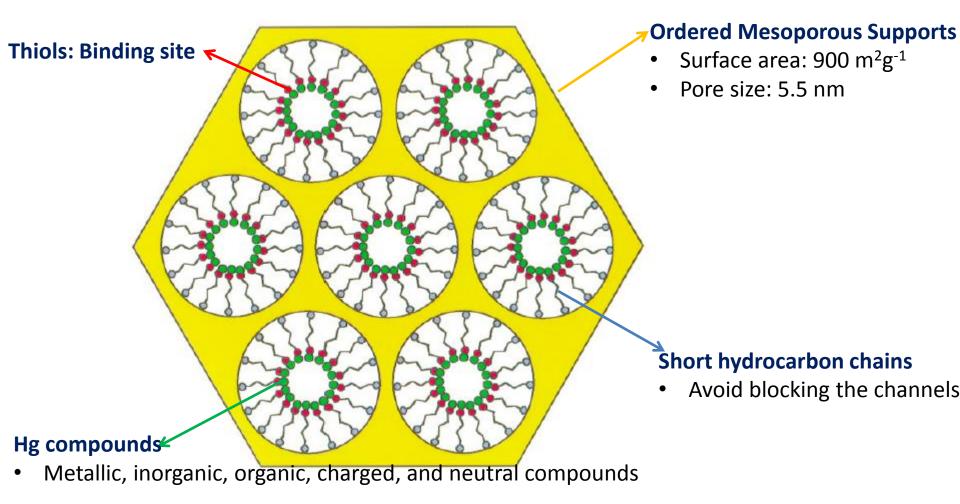
Background

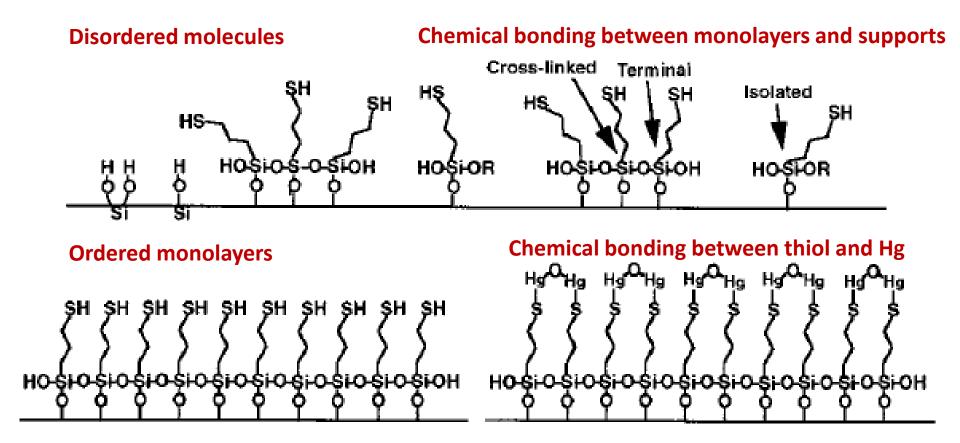
Energy Saving Lamp

Mercury Thermometer

Minamata Disease in Japan in 1950s

Batteries


Smoke Pollution


Mercury pollution exists everywhere, which brings pain and disaster to people all over the world.

What?

This paper combines ordered mesoporous structures and functionalized monolayers for the removal of Hg contamination.

Why?

How?

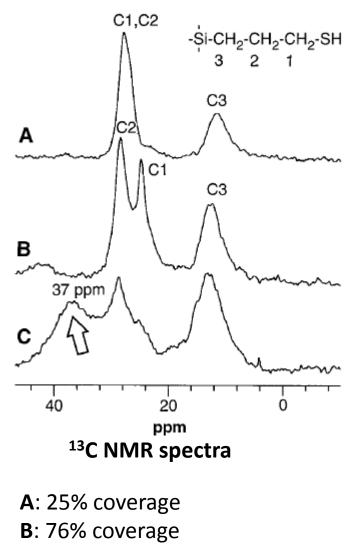
Challenges for preparation of the materials

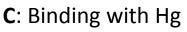
Enough Si-OH on the substrate for anchor of thiols;

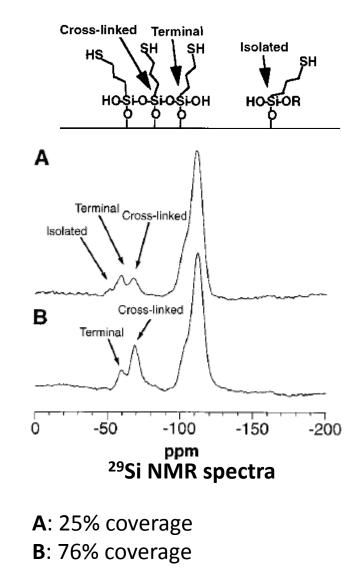
Enough water for hydrolysis of siloxane groups in thiols;

Removal of free water to avoid polymerization of thiol layers.

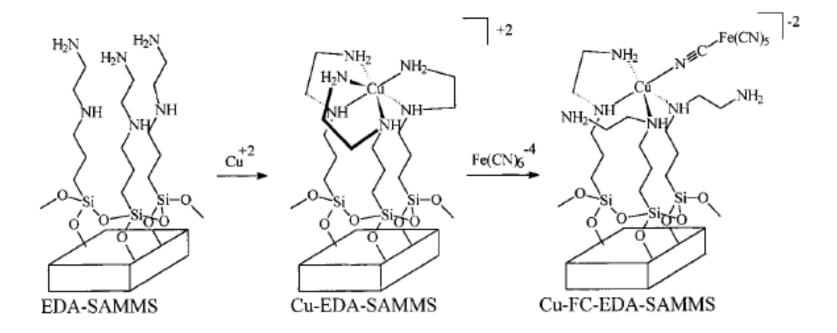
Techniques

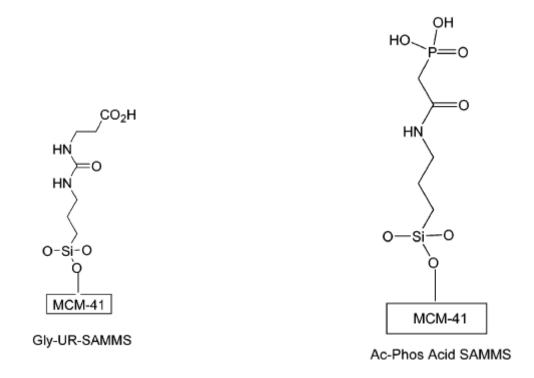

- Carefully rehydrated the silica surface;
- Controlled the amount of surface adsorbed water;
- Solvent: Benzene and toluene were optimum;
- Excess silane (at least fivefold);
- Systematically varied the population densities of functional groups on surface;


The Ability to Remove Heavy Metals


 Table 1. Analyzed concentrations of toxic metal contaminants regulated under the Resource Conservation and Recovery Act in waste solutions before and after FMMS treatment.

Solution	Concentration (ppm)							K _d
	Hg	Ag	Cr	Pb	Ba	Zn	Na	of Ḧ́g
No treatment								
WW, pH 3	6.20	1.80	1.79	7.22	7.18	3.96	2220	
WW, pH 7	6.00	0.45	1.13	5.25	7.12	2.75	2212	
WW, pH 9	6.35	1.04	0.58	2.90	7.15	1.32	2222	
Oil	12.10							
After treatment, 10% FMMS								
WW, pH 3	0.0108	< 0.005	1.45	1.66	7.60	3.93	2236	55,670
WW, pH 7	0.0064	< 0.005	0.70	0	7.35	2.23	2202	90,974
WW, pH 9	0.0056	< 0.005	0.71	0	7.40	1.41	2218	110,056
Oil	0.635							1,806
After treatment, 25% FMMS								
WW, pH 3	0.0008	< 0.005	1.67	2.26	8.64	5.06	2185	290,588
WW, pH 7	0.0008	< 0.005	0.07	0	8.21	1.54	2114	281,213
WW, pH 9	0.0007	< 0.005	0	0	8.82	1.19	2201	340,141
Oil	0.06							3,467


Structure and Binding Study



Cs Selective FMMS

Lin, Y.; Fryxell, G. E.; Wu, H.; Engelhard, M., Environmental science & technology 2001, 35 (19), 3962-3966.

Actinide Sequestration

Fryxell, G. E.; Lin, Y.; Fiskum, S.; Birnbaum, J. C.; Wu, H.; Kemner, K.; Kelly, S., Environmental science & technology **2005**, 39 (5), 1324-1331.

Thanks For Your Listening!