Recent Advances in Transition-Metal-Catalyzed C-X Activation

Reporter: Songbai Wu

Supervisor: Prof. Jing Zhao

Dr. Mei Hong

2014.06.08

Contents

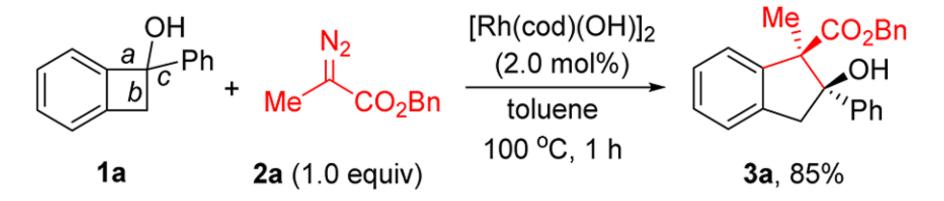
C-C Bond Cleavage

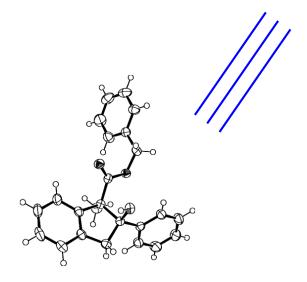
C-S Bond Cleavage

C-O Bond Cleavage

C-N Bond Cleavage

Formal Carbene Insertion into C—C Bond: Rh(I)-Catalyzed Reaction of Benzocyclobutenols with Diazoesters

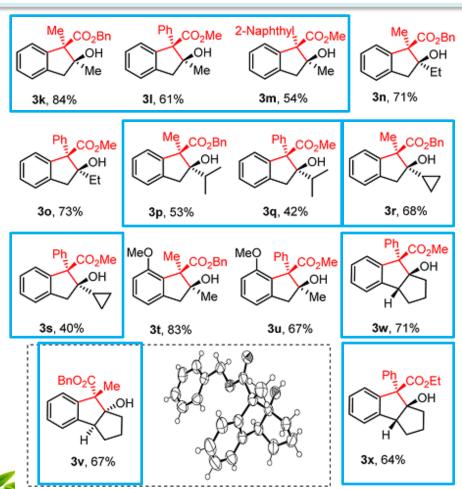

Ying Xia, Zhenxing Liu, Zhen Liu, Rui Ge, Fei Ye, Mohammad Hossain, Yan Zhang, and Jianbo Wang*

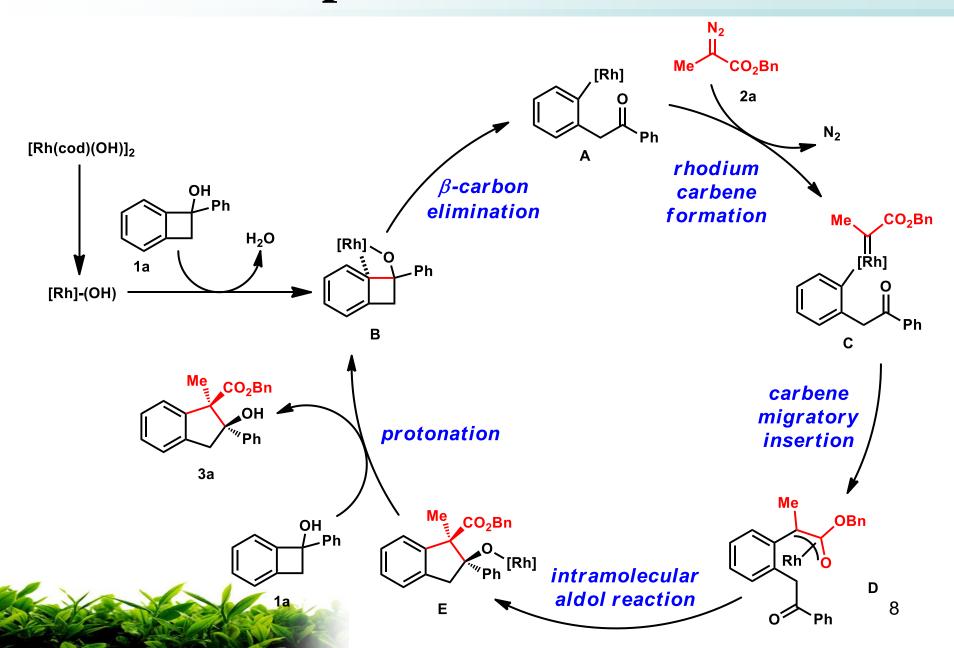

Origin of the Idea

a) Ishida. N, Nakanishi and Y, Murakami. M, J. Am. Chem. Soc., 2012, 134, 19103.

b) Y. Xia, Z. Liu, Z Liu, R. Ge, F. Ye, M. Hossain, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2014, 136, 3013.

Screening of the Reaction Conditions




Scope of Substrates

$$R^{1} \stackrel{\text{OH}}{=} R^{2} + R^{3} \stackrel{\text{N}_{2}}{=} CO_{2}R^{4} \stackrel{\text{[Rh(cod)(OH)]}_{2}}{=} (2.0 \text{ mol}\%) \\ \text{toluene, } 100 \, ^{\circ}\text{C}, 1 \text{ h} \\ R^{1} \stackrel{\text{II}}{=} R^{3} \stackrel{\text{CO}_{2}R^{4}}{=} 3a-x$$

Scope of Substrates

Proposed Mechanism

Summary-1

A Rh(I)-catalyzed formal C-C bond carbene insertion reaction between benzocyclobutenols and diazoesters

Selective cleavage of C-C bond, Rh(I) carbene insertion, and intramolecular aldol reaction

Excellent regioselectivity and diastereoselectivity under mild reaction conditions, all-carbon quaternary center

Chemical Science

EDGE ARTICLE

View Article Online
View Journal | View Issue |

Cite this: Chem. Sci., 2013, 4, 1573

Cross coupling of thioethers with aryl boroxines to construct biaryls via Rh catalyzed C-S activation†

Fei Pan,^a Hui Wang,^b Peng-Xiang Shen,^a Jing Zhao^b and Zhang-Jie Shi^{*ac}

Origin of the Idea

Traditional Methods

$$Ar - X + Ar'B(OR)_2$$
 [Pd] \longrightarrow $Ar - Ar'$
X=I, Br, CI, OMe, OTf, OTs, etc

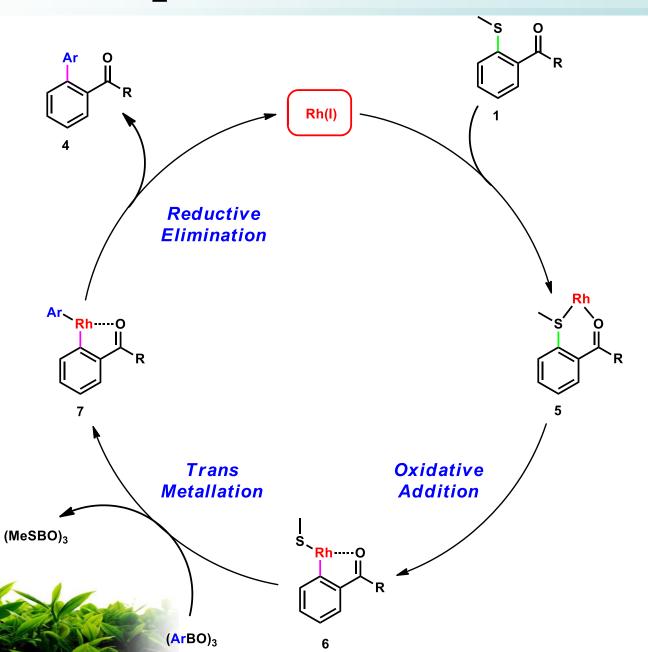
New Method

$$Ar-SMe + Ar'B(OR)_2 = [Rh] \longrightarrow Ar-Ar'$$

b) F. Pan, H. Wang, P. Shen, J. Zhao and Z. Shi, *Chem. Sci.*, 2013, 4, 1573.

Screening of the Reaction Conditions

Entry	Catalyst	Additive	Base	Solvent	3aa ^b (%)
1	Rh(CO) ₂ Cl ₂	Ag_2CO_3	K_3PO_4	Toluene	38%
2	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_3PO_4	Dioxane	48%
3	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_3PO_4	THF	53%
4	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_3PO_4	DCE	56%
5	Rh(CO) ₂ Cl ₂	Ag_2CO_3	K_3PO_4	THF-DCE 1:1	59%
6	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_3PO_4	THF-DCE 1 : 2	83%
7	$Rh(COD)Cl_2$	Ag_2CO_3	K_3PO_4	THF-DCE 1 : 2	42%
8	Rh(acac) ₃	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	0
9	Pd(OAc) ₂	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	62%
10	Ni(PCy ₃) ₂ Cl ₂	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	5%
11	Ru(COD)Cl ₂	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	47%
12	CuI	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	0
13	$Rh(CO)_2Cl_2$	Ag_2O	K_3PO_4	THF-DCE $1:2$	17%
14	$Rh(CO)_2Cl_2$	Cu(OAc) ₂	K_3PO_4	THF-DCE $1:2$	26%
15	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_2CO_3	THF-DCE $1:2$	46%
16	$Rh(CO)_2Cl_2$	Ag_2CO_3	Na_3PO_4	THF-DCE $1:2$	18%
17	$Rh(CO)_2Cl_2$	Ag_2CO_3	CsOAc	THF-DCE $1:2$	29%
18	$Rh(CO)_2Cl_2$	Ag_2CO_3	_	THF-DCE $1:2$	19%
19	$Rh(CO)_2Cl_2$	_	K_3PO_4	THF-DCE $1:2$	16%
20	_	Ag_2CO_3	K_3PO_4	THF-DCE $1:2$	0
21^c	$Rh(CO)_2Cl_2$	Ag_2CO_3	K_3PO_4	THF-DCE 1:2	88% (78%)


Screening of the Reaction Conditions

Scope of Aryl Boroxines

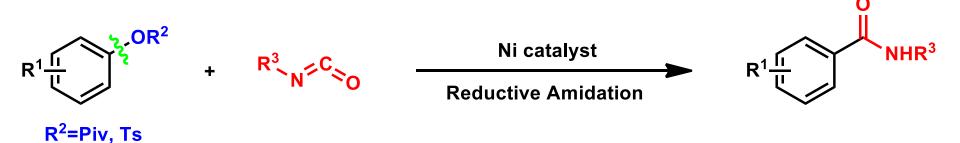
Scope of Thioethers

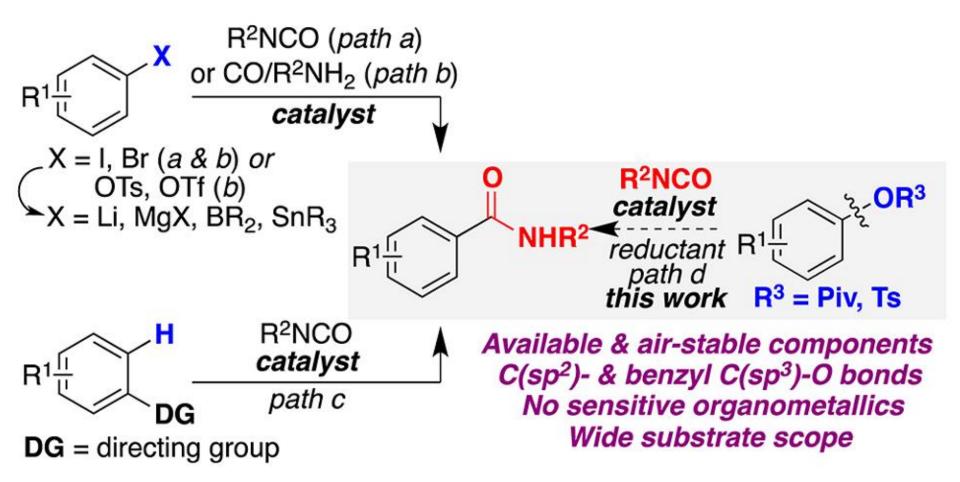
Proposed Mechanism

Summary-2

Rhodium-catalyzed C–C bond formation through unreactive aryl C–S bond cleavage

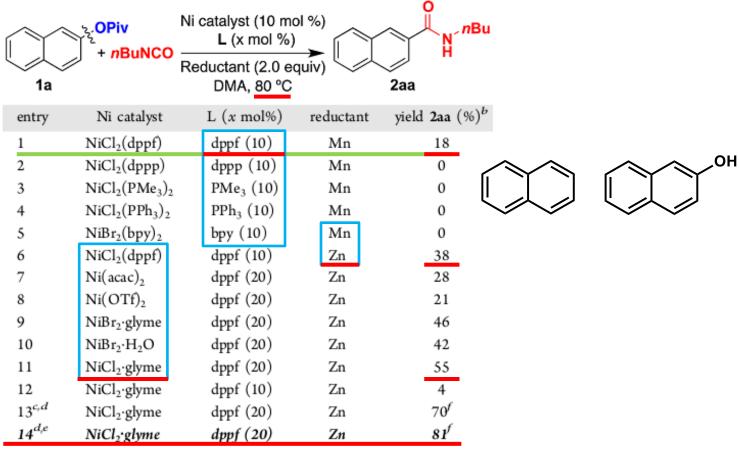
A supplement to the traditional Suzuki-Miyaura coupling


Broad substrate scope and good to excellent yields

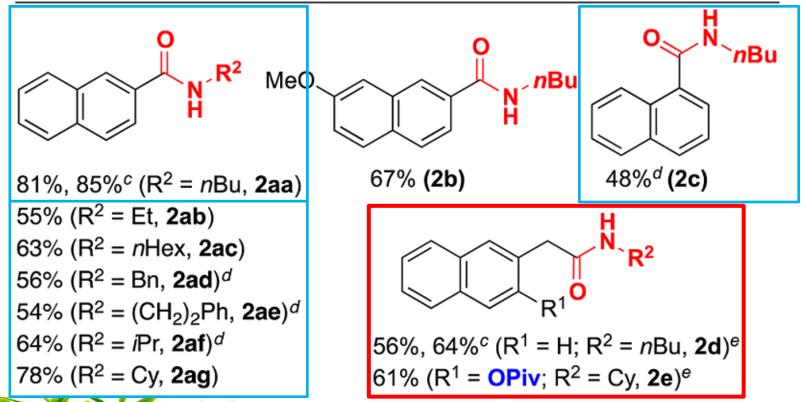


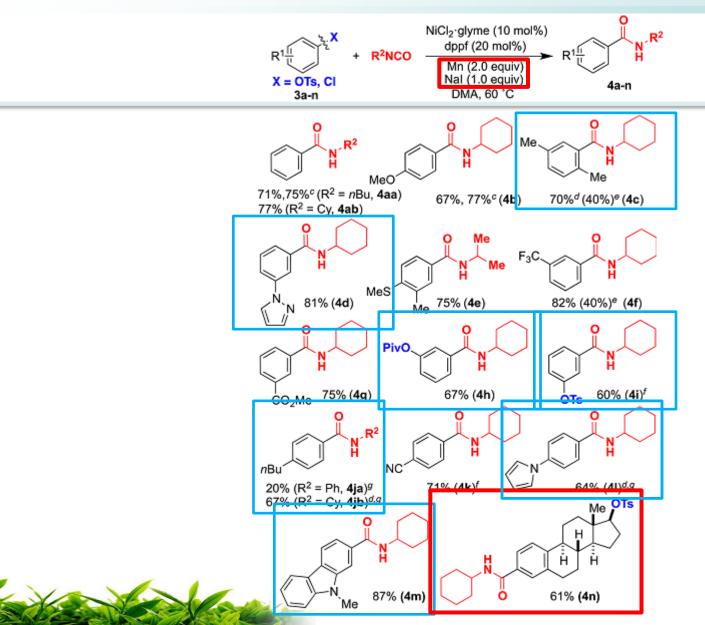
Ni-Catalyzed Direct Reductive Amidation via C-O Bond Cleavage

Arkaitz Correa[†] and Ruben Martin*,^{†,§}



Origin of the Idea


Screening of the Reaction Conditions


"Reaction conditions: **1a** (0.50 mmol), nBuNCO (2.0 equiv), [Ni] (10 mol%), **L** (x mol%), reductant (2.0 equiv), DMA (0.25 M) at 80 °C for 24 h. "HPLC yield using anisole as internal standard. "K₂HPO₄ (1.0 equiv) was added. "DMF as solvent. "K₂HPO₄ (2.0 equiv) was added. "Isolated yield.

Scope of Isocyanates

NiCl₂·glyme (10 mol%)
$$\frac{\text{dppf (20 mol\%)}}{\text{K_2HPO_4 (2.0 equiv)}}$$
1a-e
$$\frac{\text{R}^{1} - \text{R}^{2} - \text{N} - \text{R}^{2} - \text{N} - \text{R}^{2} - \text$$

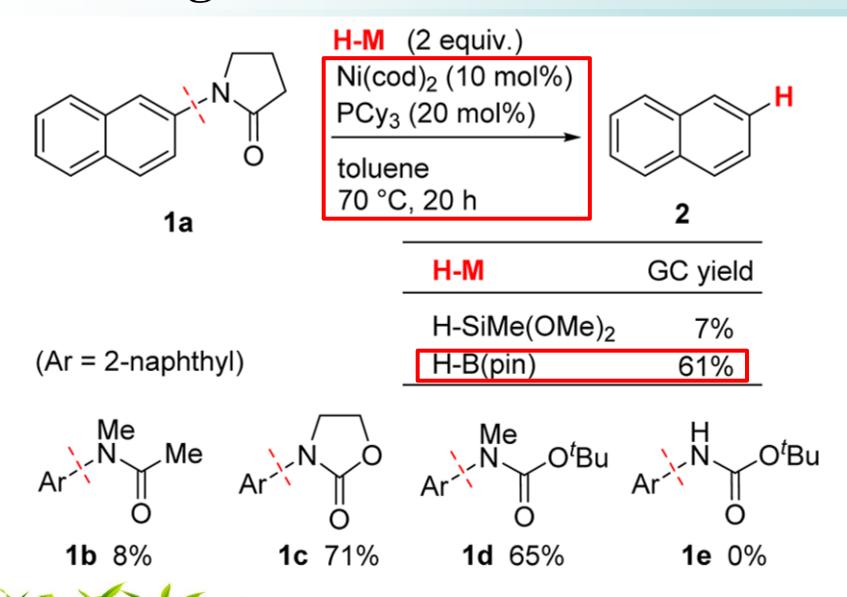
Scope of Aryl Tosylates

Summary-3

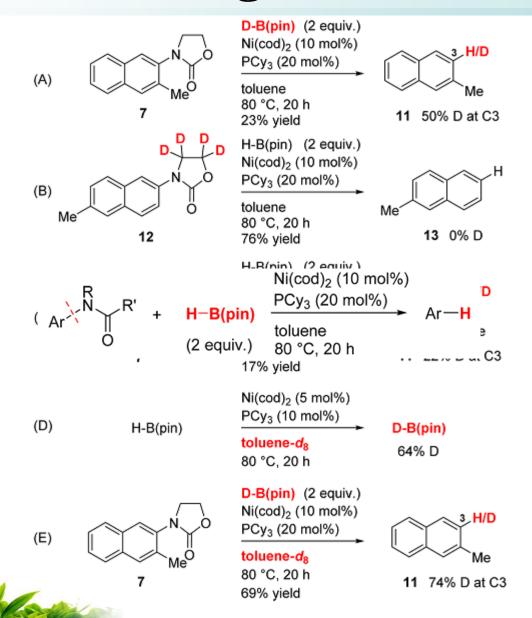
A novel Ni-catalyzed reductive amidation of aryl $C(sp^2)$ -O and $C(sp^3)$ -O eletrophiles with isocyanates

C-C bond formation through C-O bond cleavage

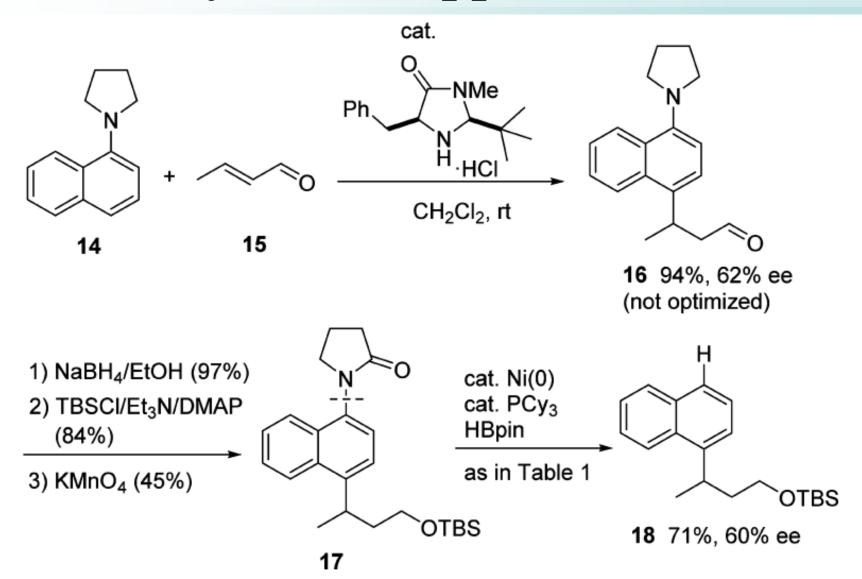
A complement to existing methodologies to prepare benzamide derivatives



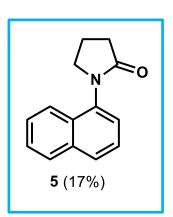
Nickel-Catalyzed Reductive and Borylative Cleavage of Aromatic Carbon—Nitrogen Bonds in N-Aryl Amides and Carbamates


Mamoru Tobisu,*,†,‡,§ Keisuke Nakamura,† and Naoto Chatani*,†

Screening of the Reaction Conditions



Scope of Substrates


Labeling Studies

Synthetic Applications

Scope of Substrates

Summary-4

A novel Ni-catalyzed C(aryl)-N bond cleavage reaction

C-H and C-B bond formation through C-N bond cleavage, respectively

In the absense of an ortho directing group

Thank you!

