深圳市计算化学与药物设计重点实验室
Lab of Computational Chemistry and Drug Design

Dr. Fan Jiang

时间:2013-04-08

 

JF_大

蒋帆 Dr. Fan Jiang

Assoc. Prof. (2014~)

Ph.D Peking University

Research Interests

Computational BioMolecular Sciences: especially focusing on develop more accurate methods for modeling and simulating peptide/protein systems by combining physics-based and informatics-based approaches.

1.Residue-Specific Force Fields (RSFFs): PDB statistical analysis, coil library, quantum mechanics calculation, force field parameterization, water model, implicit solvation.

2.Folding and Structure Prediction of Peptides and Proteins: Ab initio folding, template-based modeling, structure refinement, model accuracy estimation, cyclic peptides, disulfide-rich peptides, protein-protein interaction, phosphorylation.

 

Education and Work Experience

1999-2003: B. Sc. in Chemistry, Peking University

2003-2008: PhD in Physical Chemistry, Peking University (Advisor: Prof. Yun-Dong Wu)

2008-2010: Postdoctoral Researcher, the Hong Kong University of Science and Technology

2010-2014: Senior Research Assoc., Peking University Shenzhen Graduate School

2014-present: Research Assoc. Prof, Peking University Shenzhen Graduate School

 

Awards

1999: Outstanding Freshman Award, Peking University

2005-2006: Dong-Gang Scholarship, Peking University

2008: China Thomson-Reuters Research Fronts Award (中国卓越研究奖)

2017: Shenzhen Local-level Talent (深圳市地方级领军人才)

2017: Special Supporting Program for Outstanding Young Scholars of Guangdong Province (广东“特支计划”青年拔尖人才)

 

Grants 

2013-2015: NSFC, Young Scientist Fund, No. 21203004, “Protein Force Field Development Towards Structure Prediction” (project leader)

2016-2019: NSFC, General Program, No. 21573009, “Ab Initio Prediction of Protein Structures Based on Residue-Specific Force Fields” (project leader)

2017-2020: Shenzhen Key Program for Basic Research, JCYJ20170412150507046, “Structure and Function Prediction of Natural Peptides and Their Gene Mining” (project correspondent)

2017-2020: Shenzhen Key Program for Basic Research, JCYJ20170412151002616, “Conformational Study and Optimization of Macrocyclic Natural Products” (key participant)

 

Invited Talks

1.4th Chinese-French Workshop in Theoretical Chemistry, June 2013, Nanjing

2.International Symposium on Nanotechnology in Health and Environment, Nov. 2013, Shenzhen

3.249th ACS National Meeting, March 2015, Denver

4.2015 Conference on Bioinformatics and Computational Biology, Nov. 2015, Beijing

5.30th Chinese Chemical Society National Conference, July 2016, Dalian

6.4th International Conference on Molecular Simulation, Oct 2016, Shanghai

7.2016 Symposium on Computational Statistical Mechanics of Complex Systems, Nov. 2016, Shenzhen

8.Symposium on Theoretical & Computational Studies of Biological Systems, Oct. 2017, Beijing

9.2018 workshop on Computational Biophysics and Systems Biology, May 2018, Shenzhen

10.The 16th Chinese Biophysics Congress, Aug 2018, Chengdu

 

Publications:

1. Tang, Z.; Jiang, F.; Yu, L. T.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y.-D. Novel small organic molecules for a highly enantioselective direct Aldol reaction. J. Am. Chem. Soc. 2003, 125, 5262-5263.

2. Tang, Z.;† Jiang, F.;† Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y.-D. Enantioselective direct aldol reactions catalyzed by L-prolinamide derivatives. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5755-5760. (†co-first author)

3. Zhang, H. L.; Jiang, F.; Zhang, X. M.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y.-D. Modification of (1R,2S)-1,2-diphenyl-2-aminoethanol for the highly enantioselective, asymmetric alkylation of N-diphenylphosphinoyl arylimines with dialkylzinc. Chem. Eur. J. 2004, 10, 1481-1492.

4. Cheng, C. L.; Sun, J.; Wang, C.; Zhang, Y.; Wei, S. Y.; Jiang, F.; Wu, Y.-D. Protonated N'-benzyl-N'- prolyl proline hydrazide as highly enantioselective catalyst for direct asymmetric aldol reaction. Chem. Commun. 2006, 215-217.

5. Jiang, F.; Han, W.; Wu, Y.-D. Influence of side chain conformations on local conformational features of amino acids and implication for force field development. J. Phys. Chem. B. 2010, 114, 5840-5850.

6. Han, W.; Wan, C.; Jiang, F.; Wu, Y.-D. PACE force field for protein simulations. 1. Full parameterization of version 1 and verification. J. Chem. Theory Comput. 2010, 6, 3373-3389.

7. Wu, X.-H.; Wang, Y.; Zhuo, Z.; Jiang, F.; Wu, Y.-D. Identifying the hotspots on the top faces of WD40-repeat proteins from their primary sequences by b-bulges and DHSW tetrads. Plos One 2012, 7, e43005.

8. Wang, Y.; Jiang, F.; Zhuo, Z.; Wu, X.; Wu, Y.-D. A method for WD40 repeat detection and secondary structure prediction. Plos One 2013, 8, e65705.

9. Jiang, F.; Han, W.; Wu, Y.-D. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Phys. Chem. Chem. Phys. 2013, 15, 3413-3428. (invited perspective article)

10. Jiang, F.;* Zhou, C.-Y.; Wu, Y.-D.* Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. J. Phys. Chem. B. 2014, 118, 6983-6998. (invited feature article with cover art)

11. Jiang, F.;* Wu, Y.-D.* Folding of fourteen small proteins with a residue-specific force field and replica-exchange molecular dynamics. J. Am. Chem. Soc. 2014, 136, 9536–9539.

12. Zhou, C.-Y.; Jiang, F.;* Wu, Y.-D.* Residue-specific force field based on protein coil library. RSFF2: modification of Amber ff99SB. J. Phys. Chem. B 2015, 119, 1035–1047.

13. Xun, S.; Jiang, F.;* Wu, Y.-D.* Significant refinement of protein structure models using a residue-specific force field. J. Chem. Theory Comput. 2015, 11, 1949–1956.

14. Zhou, C.; Jiang, F.;* Wu, Y.-D.* Folding Thermodynamics and Mechanism of Five Trp-Cage Variants from Replica-Exchange MD Simulations with RSFF2 Force Field. J. Chem. Theory Comput. 2015, 11, 5473-5480.

15. Zeng, J.; Jiang, F.;* Wu, Y.-D.* Folding simulations of an α‑helical hairpin motif αtα with residue-specific force fields. J. Phys. Chem. B 2016, 120, 33–41.

16. Geng, H.; Jiang, F.;* Wu, Y.-D.* Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields. J. Phys. Chem. Lett. 2016, 7, 1805–1810.

17. Hu, K.; Geng, H.; Zhang, Q.; Liu, Q.; Xie, M.; Sun, C.; Li, W.; Lin, H.; Jiang, F.; Wang, T.;* Wu, Y.-D.;* Li, Z.* An in-tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angew. Chem. Int. Ed. 2016, 55, 8013–8017.

18. Zhao, H.; Liu, Q.; Geng, H.; Tian, Y.; Cheng, M.; Jiang, Y.; Xie, M.; Niu, X.; Jiang, F.; Zhang, Y.; Lao, Y.; Wu, Y.-D.;* Xu, N.;* Li, Z.* Crosslinked aspartic acids as helix-nucleating templates. Angew. Chem. Int. Ed.2016, 55, 12088-12093.

19. Xun, S.; Jiang, F.;* Wu, Y.-D.* Intrinsically disordered regions stabilize the helical form of the C-terminal domain of RfaH: A molecular dynamics study. Bioorg. Med. Chem.2016, 24, 4970-4977.

20. Zhang, Q.; Jiang, F.; Zhao, B.; Lin, H.; Tian, Y.; Xie, M.; Bai, G.; Gilbert, A. M.; Goetz, G. H.; Liras, S.; Mathiowetz, A. A.; Price, D. A.; Song, K.; Tu, M.; Wu, Y.; Wang, T.;* Flanagan, M. E.;* Wu, Y.-D.;* Li, Z.* Chiral sulfoxide-induced single turn peptide α-helicity. Sci. Rep.2016, 6, 38573.

21. Zeng, J.; Jiang, F.;* Wu, Y.-D.* The mechanism of phosphorylation-induced folding of 4E-PB2 revealed by molecular dynamics simulations. J. Chem. Theory Comput.2017, 13, 320-328.

22. Wu, H.; Jiang, F.;* Wu, Y.-D. Significantly improved protein folding thermodynamics using a dispersion-corrected water model and a new residue-specific force field. J. Phys. Chem. Lett.2017, 8, 3199-3205.

23. Yuan, Y.; Zhao, Y.; Chen, L.; Wu, J.; Chen, G.; Li, S.; Zou, J.; Chen, R.; Wang, J.;* Jiang, F.;* Tang, Z.* Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G–T mismatch. Nucleic Acids Res. 2017, 45, 8676–8683.

24. Chen, F.; Zhang, C.; Wu, H.; Ma, Y.; Luo, X.; Gong, X.; Jiang, F.; Gui, Y.;* Zhang, H.;* Lu, F.* The E3 ubiquitin ligase SCFFBXL14 complex stimulates neuronal differentiation by targeting the Notch signaling factor HES1 for proteolysis. J. Biol. Chem. 2017, 292, 20100.

25. Hu, K.; Jiang, Y.; Xiong, W.; Li, H.; Zhang, P.-Y.; Yin, F.; Zhang, Q.; Geng, H.; Jiang, F.;* Li, Z.;* Wang, X.;* Li Z.* Tuning peptide self-assembly by an in-tether chiral center. Science Adv. 2018, 4, ASAP on web.

26. Kang, W.; Jiang, F.;* Wu, Y.-D. Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition. J. Chem. Theory Comput. 2018, 14,4474–4486.

27. Hou, Z.; Sun, C.; Geng, H.; Hu, K.; Xie, M.; Ma, Y.; Jiang, F.;* Yin, F.;* Li, Z.* Facile Chemoselective Modification of Thio-Ethers Generates Chiral Center-Induced Helical Peptides. J. Chem. Bioconjugate Chem. 2018, 29, 2904–2908.

28. Liu, Z.; Jiang, F.;* Wu, Y.-D.* Significantly Different Contact Patterns between Aβ40 and Aβ42 Monomers Involving the N-Terminal Region. J. Chem. Chem. Biol. & Drug Des. 2018published on web.

29. Jiang, F.; Wu, H.; Kang, W.; Wu, Y.-D.* Developments and Applications of Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins.J. Chem. Theory Comput. 2019accepted (invited perspective paper).